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Abstract

We present and experimentally test a collection of search theoretic explanations
for ‘choice overload’, the phenomena by which a default alternative is selected
more often in larger choice sets. A standard search model, with constant search
costs and a known distribution of item quality, cannot give rise to choice over-
load. If one instead assumes that either (i) the Decision Maker (DM) must
learn the quality distribution (ii) search costs are increasing or (iii) the DM
decides the search strategy in advance, then choice overload can occur. Un-
like existing models, our approach does not require ad hoc psychological costs
(decision avoidance), or for the DM to assume the choice set was selected by a
profit maximizing firm (contextual inference). Data from our laboratory exper-
iments are consistent with choice overload caused by search with learning and
increasing costs, and cannot be explained by decision avoidance or contextual
inference.
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1 Introduction

The standard model of utility maximization tells us that increasing the set of available

options can make the consumer no worse off, and may well improve their welfare. Since

the pioneering study of Iyengar and Lepper (2000),1 a body of work in psychology

has called this assumption into question. The umbrella term “choice overload” covers

a number of phenomena by which larger choice sets appear to make people worse off.

By now there is a large literature investigating various aspects of choice overload;

see Scheibehenne et al. (2010) and Chernev et al. (2015) for recent reviews and meta

analyses.

Some of the measures used to identify choice overload are hard to interpret using

the classic tools of economic analysis; examples include a reduction in ex-post reported

satisfaction or lower confidence that the right choice was made.2 Others fall very much

in the realm of choice theory. In this paper we focus on the observation that larger

choice sets may make people more likely to choose a “default” option, as in the famous

‘jam’ study of Iyengar and Lepper (2000). While previous literature has questioned

the reliability of this result,3 recent work by Dean et al. (2022) has developed more

powerful tests, and established that choice overload of this type is likely to be more

widespread than previously thought.

The aim of this paper is to develop a family of models that can explain choice

overload4 using an optimal search framework, and test them using laboratory ex-

periments. We establish that a standard search model, in which the cost per item

searched is constant and the distribution of item quality is known,5 optimal behavior

can never give rise to choice overload. However, simple modifications to this basic

framework can lead to the default option being chosen more often in a larger choice

1See also Reibstein et al. (1975).
2Though see recent work by Enke and Graeber (2023)
3Some direct replications of previous experiments have failed (Scheibehenne, 2008; Greifeneder

et al., 2010). One recent meta-analysis concluded that the mean measured choice overload effect is
zero (Scheibehenne et al., 2010). Another one (Chernev et al., 2015) concludes that whether or not
choice overload exists may depend a lot on context.

4Despite the above discussion, from now on we will use ‘choice overload’ to refer specifically to
the phenomenon of choosing a default option more often in larger choice sets.

5i.e. a model in the style of Caplin et al. (2011).
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set - specifically (i) if the decision maker (DM) must learn about the distribution

of item quality (ii) if search costs are increasing with the number of items search or

(iii) if the DM decides upon the number of items to search in advance, rather than

dynamically updating their strategy.6 We show how these models can be behaviorally

distinguished, both from each other and from existing models of choice overload. Fi-

nally, we run an experiment in which we can observe subjects’ search and choice

behavior, and establish that search-based mechanisms are an important component

of choice overload.

To our knowledge, there are currently two main classes of model used to ex-

plain choice overload. The first are models of ‘contextual inference’ (Kamenica, 2008;

Kuksov and Villas-Boas, 2010; Nocke and Rey, 2021), in which the DM makes in-

ferences about the nature of a set of alternatives based on its size. Typically these

inferences are driven by the assumption that the choice sets are chosen by a profit

maximizing firm. The second are models based on the psychological concept of ‘de-

cision avoidance’ (Beattie et al., 1994; Dean, 2008; Gerasimou, 2018), by which a

decision maker avoids engaging with large choice sets because they find it aversive to

do so.7

Our approach offers potential advantages over these frameworks. Relative to con-

textual inference, our model can lead to choice overload even if the alternatives are

ex-ante identical in large and small choice sets. It does not require beliefs about the

distribution of alternatives to vary with set size, and in particular does not require

the assumption that choice sets are chosen by profit maximizing firms. This is im-

portant, as choice overload has been observed in situations in which this is clearly

not the case (see for example Dean et al. (2022)). Relative to models of decision

avoidance, our approach offers a rational basis for choice overload, without relying on

ad hoc behavioral forces. Because our framework can help to determine the extent

to which choice overload can be explained by optimal behavior in a search theoretic

6As in the model of Stigler (1961)
7Regret has been proposed as a driving force behind choice overload (see for example Buturak

and Evren (2017)). While somewhat harder to fit into our framework, we see this as essentially
working in a manner similar to decision avoidance.
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context, we argue that our model is the benchmark that should be used to identify

richer psychological phenomena such as decision avoidance.

In order to establish the relationship between search and choice overload we begin

by developing a framework that links a general model of sequential search to observ-

ables. We consider two different types of stochastic data. The first, which we term

the ‘experimental data set’ records the sequence in which alternatives are searched,

the point at which search stops and the alternative that is chosen. This is the type of

data we collect in our experiment, and is necessary to differentiate between models

of choice overload. The second is standard stochastic choice data, which we use to

define choice overload: We say that a data set exhibits choice overload if there exists

a subset and a superset such that the default is chosen more often in the latter than

the former.

The model we consider consists of two elements: a utility function over alterna-

tives and a threshold, which can be a function of the search history and the number

of alternatives left to search. The DM searches through alternatives one by one. Af-

ter each item is searched, they compare the utility of all items seen so far to their

threshold. If a previously seen item has a higher utility than the current threshold,

search stops and the best item seen so far is chosen. If not, search continues and the

same process is repeated after the following item has been searched.8 We define what

it means for both experimental and standard data set to be consistent with models

in this class.

Within this general framework, we can identify different models of optimal se-

quential search as restrictions on the class of allowable threshold function, and so

determine which can give rise to choice overload. We begin with the most straight-

forward of such models, in which the DM faces a fixed cost to search each alternative,

and assumes that the value of each unsearched alternative is drawn from a known,

fixed distribution. It has been previously shown (Weitzman, 1979; Caplin et al., 2011)

that optimal behavior in this setting involves a fixed threshold which is invariant both

to the size of the choice set and the number of alternatives left to search. Using our

8A similar set up is considered in Aguiar et al. (2016) and Aguiar and Kimya (2019), but with a
threshold that is not a function of search history.
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framework, we show that this model cannot give rise to choice overload.

We next consider three variants of this basic search model which can lead to the

default being chosen more often in larger choice sets. First, the case in which the DM

has search costs that increase the more alternatives have been searched - for example

due to fatigue.9 We establish that this gives rise to an optimal threshold which falls

the longer the DM searches, and that such a model can give rise to choice overload.

Second, a model in which the DM does not engage in dynamically optimal behavior,

but instead selects the number of options they will search in advance. This is the

‘simultaneous search’ model of Stigler (1961), and has been shown in some cases to

better fit search behavior than the standard dynamic version of sequential search

(De Los Santos et al., 2012). This model leads to a maximal number of alternatives

the DM will search, which again can give rise to choice overload.

Perhaps the most interesting of the model variants we consider is that in which the

DM must learn about the distribution of alternatives from which they are drawing.

Consider a situation in which a DM believes there to be two different types of jam

shop: good and bad. If, when they begin to search, they see a number of low quality

jams, they may come to believe that they are in a low quality shop, meaning the

value of further search is low. This may lead them to leave the store without buying

any jam, even if there are, in fact, good jams available. This is the key mechanism of

the learning model: search can stop because observed alternatives are bad, whereas

in the standard search model, only high quality alternatives can stop search. This

can in turn lead to choice overload if a large choice set is created from a smaller one

by adding low quality alternatives.

We believe the learning channel to be of particular interest because it seems that

the key feature of distributional uncertainty is common in many practical and experi-

mental settings in which choice overload has been observed. A participant in Iyengar

and Lepper’s jam experiment does not know how the jams have been selected. Nei-

ther do the employees facing menus of health insurance options, as studied in Abaluck

and Gruber (2023) know the rule that has determine which plans they have been of-

9Such behavior is consistent with the results of Brown et al. (2011).
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fered.10 It seems natural in such settings that a DM will learn about the quality of

a choice set by sampling from it, and so may get discouraged if they see low quality

alternatives. This is a feature missing from all other models of choice overload we

consider.

We show how our experimental data set can differentiate between search-based

explanations for choice overload, and models of decision avoidance and contextual

inference. Search models imply that choice overload is caused by people starting to

search, but stopping before they find an item which is better than the default alterna-

tive. As a result, the probability of choosing the default will increase in the position

of the first above-default alternative. In contrast, contextual inference and decision

avoidance predict that choice overload is caused by people failing to start searching

in larger choice sets, and the probability of choosing the default is independent of the

position of the first above-default alternative.

The same data also allows us to test for learning, fatigue and simultaneous search

as an driver of overload within the search framework. The learning model implies

that, controlling for the position of the first high quality alternative, the probability

of default choice should depend on the beliefs a Bayesian decision maker would hold

about the quality of the choice set, as well as the number of alternatives left to search.

The fatigue model predicts that the position of the first above-default alternative, but

not beliefs should matter. The simultaneous search model predicts the same thing,

but additionally predicts that probability of stopping search should not depend on

the value of alternatives so far seen.

In order to test these predictions, we run a laboratory experiment using a design

similar to that of Dean et al. (2022). Subjects must choose between alternatives which

are numeric values described as sums (five addition or subtraction operations). The

monetary value of the alternative is given by the value of the sum. This creates an

environment in which the value of alternatives is clear to the outside observer, but

challenging for the subject to work out. Each choice set consists of a default option,

and either 1, 10, 15 or 20 other options. The default option always appears at the

10The available plans have been selected for them by their employer, rather than determined by
a market equilibrium, so the logic of contextual inference does not apply.
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top of the screen, has the same value, and is represented by a degenerate sum.

We make two significant departures from the set up of Dean et al. (2022). First, we

control the order in which the subject must search through alternatives in any given

choice set, and make it observable when search has stopped, thus generating data

equivalent to the ‘experimental data set’ described above. Specifically, all alternatives

other than the default are initially obscured. The subject must press a button to

uncover each alternative. At any point they can stop and choose one of the uncovered

alternatives.

Second, we make explicit to the subjects, verbally, visually and through expe-

rience, the distribution from which the alternatives are being drawn. In our main

treatment subjects are told that the values in each choice set are drawn from one

of two distributions, one of which stochastically dominates the other. This means

there is an opportunity for learning based on the values already seen, and subjects

are explicitly told this. As far as we know, ours is the first experimental test of choice

overload to explicitly control subject’s beliefs. In the ‘no learning’ control subject are

told that values are drawn from a single distribution (the average of the two distribu-

tions in the learning treatment), so beliefs about the value of future options should

be unaffected by past observed values.

621 subjects from the Prolific platform took part in the experiment, 307 in the

learning treatment, and 314 in the no learning treatment. Each subject faced 10

choice sets, 4 of sizes 2, and 2 each of size 11, 16 and 21.

We make 5 key observations based on our results. First, we find evidence of choice

overload, replicating the findings of Dean et al. (2022). Second, we find significant

evidence for search based choice overload: most choice overload is driven by subjects

who start searching, then stop before finding something better than the default.

People are also more likely to choose the default if the first above-default alternative

appears later in the search sequence. These are both consistent with search based

models of choice overload, but not decision avoidance or contextual inference. Third,

we find evidence that, controlling for the position of the first above-default alternative,

people are more likely to choose the default in rounds which should lead the subject
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to believe the set is of low quality, providing evidence of a learning channel in choice

overload. Fourth, search position, beliefs and the highest value alternative seen so far

are all predictive of search termination, suggesting that both fatigue and learning play

a role in choice behavior, while ruling out the simultaneous search model. Finally,

results in the non-learning control are broadly in line with what one would expect:

subjects exhibit less choice overload, and beliefs are less predictive of default choice

and stopping behavior.

The fact that search plays a significant role in choice overload has implications

for the optimal design of choice set - i.e. choice architecture. It implies that the

order in which alternatives are presented matters for whether or not the default will

be chosen. Moreover, the learning model implies that content of a given choice set

matters, over and above ex ante beliefs. These observations can inform clever designs

aimed at encouraging active choice (see for example Besedeš et al. (2015)), as well as

assessing the overall welfare effects of such designs.

2 Relation to the Literature

There is, by now, a large empirical literature documenting the circumstances un-

der which choice overload does and does not occur. For recent meta analyses see

Scheibehenne et al. (2010) and Chernev et al. (2015). These reviews offer mixed sup-

port for choice overload. The former finds a mean effect of zero, but noted a high

degree of variance. The latter identifies four variables which can increase the incidence

of choice overload: decision difficulty, choice set complexity, preference uncertainty,

and decision goal. Chernev et al. (2015) argue that, taking these mediators into ac-

count, there is evidence of a robust choice overload effect. The fact that overload is

more likely to occur when choices are difficult and unfamiliar is consistent with an

explanation rooted in bounded rationality.

Recent work by Dean et al. (2022) suggests that choice overload may be more

prevalent than previously assumed. They show that previous tests are underpowered,

and introduce a new approach that reveals overload where existing approaches do not.
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We know of no previous work that collects the data on search order and stopping

that we use. Neither has previous work informed subjects of precisely how choice

sets were constructed as we do, an important step in controlling subject’s beliefs. As

we show in section 4, both of these features are important in differentiating between

different causes of choice overload.

Most previous models of choice overload fall into one of two categories: contextual

inference (Kamenica, 2008; Kuksov and Villas-Boas, 2010) and decision avoidance

(Beattie et al., 1994; Anderson, 2003; Dean, 2008). The former proposes that the

DM can make inferences about the quality of items in a choice set by the number of

alternatives it contains. Choice overload occurs because a larger range of alternatives

is assumed to signal a lower expected quality (or lower probability of fit for a con-

sumer) for any given alternative, reducing the returns to search. This assumption is

often motivated by showing that, in equilibrium, choice selections provided by profit

maximizing firms will have this feature. A similar mechanism underlies the results in

the recent work by Nocke and Rey (2021). It is worth noting that in our experiment,

and many others, choice overload occurs in situations in which choice sets are clearly

not chosen by profit maximizing firms. Section 4.6 shows how our data can be used

to differentiate between contextual inference and the search based explanations for

choice overload we introduce in this paper.

Decision avoidance models assume that a decision maker has a choice between

engaging with a given decision, and therefore potentially making an active choice,

or instead avoiding the decision and sticking with the default alternative. Choice

overload comes about because the cost of engagement is assumed to increase with set

size. However, exactly what these costs are is typically not modeled. Our approach

instead microfounds the cost of engagement through an optimal search process.11

Again, section 4.6 describes how our data can be used to differentiate between search

based and decision avoidance based explanations for choice overload.

Our work also relates to the set of decision theoretic papers that have characterized

how people choose from ordered lists of alternatives. (Rubinstein and Salant, 2006;

11Natan (2021) proposes a model of choice overload based on rational inattention. In order to
generate overload, the model also assumes that attention costs are increasing in set size.
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Horan, 2010; Aguiar et al., 2016). Perhaps the closest to our work is Manzini et al.

(2019), from which we take some of our framework and notation. However, all of these

papers have very different aims and results. None of them address the question of

choice overload, and none aim to characterize behavior resulting from optimal search

under different assumptions.

To investigate the effect of beliefs on choice overload, we introduce and solve an

extended version of the sequential search model with learning. The introduction of

elements of learning to standard search models goes back to Rosenfield and Shapiro

(1981) and Burdett and Vishwanath (1988), and a number of recent papers have

brought these elements to various settings. However, for our purposes, we needed a

model that brought together a unique combination of factors: the presence of a default

option, a finite set of alternatives (i.e. a finite horizon of search, as we compare sets

of different sizes), recall and learning about an underlying distribution common to

all options. To the best of our knowledge, all previous sequential search models with

learning miss at least one of these factors. De Los Santos et al. (2015) explore an

e-commerce setting and include learning about an underlying distribution and recall,

but search proceeds along an infinite horizon. Conlon et al. (2018) apply learning

to a job search setting, in which there’s no recall and the search horizon is infinite.

Choi and Smith (2022) develop a setting close to ours, but in which the agent chooses

the next option to search and learns about the value of each individual option in a

finite set instead of learning a common distribution generating all options. Options

have independent values, which have two components. One component is immediately

perceived by the decision maker and serves as a signal determining the order of search,

while the other component is hidden and is only discovered upon search. Therefore,

there’s no common learning element relevant for all options. Our setting, on the other

hand, has options with correlated values, with learning about a common distribution,

and which are ex ante identical.
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3 A General Framework

The aim of the theoretical section of the paper is twofold: to identify the assumptions

under which search models can lead to choice overload, and to understand the testable

implications of these models for our experimental data. In order to do this, we first

we define two data sets - one which matches the data that we will collect from the

experiment, and a second which is closer to the standard data sets in which choice

overload is identified. We show how these data sets are related, and use them to define

choice overload in our setting. Next, we introduce a general class of sequential search

models which explain choice behavior via a threshold rule and utility function, and

show how to link this class to our data. Finally, we will consider specific versions of

the optimal search model, show how they can generate choice overload, and identify

testable predictions for our experimental data.

3.1 Data

We begin with a finite grand set of alternatives X. One of these alternatives d ∈ X

is the default. A choice set is a subset of X that contains d. We use A to denote the

set of choice sets

A =
{
A ∈ 2X |d ∈ A

}
.

In our experiment, subjects will examine the alternatives in the choice set in a

given order. Let LA be the set of linear orders on A such that d appears first.

We denote the set of all such linear orders as L

L = ∪A∈ALA.

We will refer to an element l ∈ L as a list. We will sometimes abuse notation by

writing l as (xyz..) for the linear order x ▷l y ▷l z... Further, we will use lx to refer

to the linear order l truncated at observation x.

Our experimental data will allow us to observe the list from which the DM must

choose, the point at which they stopped searching through the list and the item
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they selected. Given that we wish to aggregate data over individuals that may have

different behavior, we will consider a stochastic version of such data, and define our

experimental data set as follows:

Definition 1. Let D ⊂ L be a collection of choice lists, with A(l) being the collection

of objects in list l (i.e. l ∈ LA). We define an experimental data set as ρ :

X ×X ×D → [0, 1] such that

1. ρ(x, y, l) = 0 if x /∈ A(l), y /∈ A(l) or y ▷l x

2.
∑

y∈X
∑

x∈X ρ(x, y, l) = 1 ∀ l ∈ D

We define the associated marginal distributions as follows

ĉ(x, l) =
∑
y∈X

ρ(x, y, l)

ŝ(y, l) =
∑
x∈X

ρ(x, y, l)

The interpretation is that the DM faces a number of choice lists, indexed by the

elements of D, with l being a typical choice situation. From each choice list we observe

the joint probability of choosing each element (the first argument in ρ) and stopping

search at each element (the second argument in ρ). The restriction (1) insists that

positive probability is given only to situations which are possible - i.e. that the chosen

and finally searched element must both be in A(l), and the chosen element must occur

before the finally searched element in the list l. The distributions ŝ and ĉ represent

the marginal stopping and choice probabilities for each list l.

While this data set matches well our experiment, choice overload is generally

defined using a more standard choice data. We therefore define a standard choice

data, and choice overload, as follows

Definition 2. Let C ⊂ A be a collection of choice sets. We define a standard data

set as p : X × C → [0, 1] such that p(x,A) = 0 if x /∈ A and
∑

x∈X p(x,A) = 1 for

all A ∈ C. We say that a data set exhibits choice overload if, for some A,B ∈ C
such that A ⊂ B, p(d,B) > p(d,A).
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Our standard choice data is essentially a classic stochastic choice data, with the

added restriction that the default option d is available in all choice sets. Our definition

of choice overload is similar to that used in Dean et al. (2022): A data set exhibits

choice overload if there is a subset and superset such that the default is chosen more

often in the latter than the former.

We can link together these two forms of data by defining the class of standard

data sets which are consistent with some underlying experimental data set. In order

to do so we have to consider the possible ways in which the decision maker could

search through a set A. Because the models we consider below are silent on what

determines search order, we will say that an experimental data set is consistent with

a standard data set if there exists some probability distribution over possible search

orders that lead to the same choice probabilities.

Definition 3. We say an experimental data set (ρ,D) is consistent with a standard

data set (p, C) if

1. For every A ∈ C, LA⊂ D

2. For every A ∈ C there exists a πA ∈ ∆(LA) such that, for every x ∈ A

p(x,A) =
∑
l∈LA

πA(l)ĉ(x, l)

If this is the case, we say that (π, ρ,D) generates (p, C).

The first condition states that, for every choice set A in C, we observe choice

patterns from all possible search orders on A in D. The second condition states that

there must be a probability distribution over search orders in A such that, when

combined with the choice probabilities from ρ, they match the probabilities in p.

3.2 Model

We now describe the class of models which is the focus of the paper. These are

models of sequential search in which the DM’s choice of whether to continue search
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is determined by a (potentially history dependent) threshold. Such models have

two elements. The first is a one-to-one utility function u:X → R which describes

preferences over alternatives. The second is a choice threshold, which determines the

DM’s decision whether to stop searching or not. We allow this threshold to be a

function of the alternatives that have been searched so far and the size of the choice

set, which we assume to be known to the DM. Thus the threshold function is defined

as τ : L×N → R̄, with the interpretation that τ(l, N) is the threshold applied if the

DM has observed the ordered alternatives l in a choice set they know to be of size

N .12 Consistent with our desire to model stochastic choice data, we will allow for the

decision maker to have a probability distribution over thresholds functions, which we

denote as T ∈ ∆(T ), where T is a finite feasible set of threshold functions.13

These elements can be used to define a model of sequential search with recall which

gives rise to data in the form of our experimental data set. For each choice situation

in l ∈ D, search proceeds according to the list. The DM first draws a threshold

function τ according to T . They then compare the utility of the first element they

search (which will always be d) to the threshold τ(d, |A(l)|). If u(d) is greater than

the threshold, then search stops and d is chosen. If not, then the next item x in the

ordering l will be searched. The DM then compares both u(d) and u(x) to τ(dx, |A(l)|).
If either is above the threshold then search stops and the highest utility alternative

seen so far is chosen. Otherwise search continues. We assume that, if the entire set

has been searched then search stops and the highest utility item will be chosen. We

can operationalize this assumption by adding the condition that τ(l, |A(l)|) = −∞.

In order to map this model to our experimental data set it is convenient to define

two functions from the primitives of the model. The first is the stopping function

sτ,u : L → X. The function sτ,u(l) identifies the alternative which causes search to

stop from l according to u and τ .

12Note that this domain implies that the DM has a threshold for impossible situations, for example
where they have seen three options yet the size of the choice set is 2. Such thresholds have no impact
on choice behavior, as we shall see below.

13The assumption that T is finite is without loss of generality. Given the finite nature of X, for a
utility function u there are a finite number of sets of threshold functions which give rise to different
behaviors.
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Definition 4. For a utility function u and threshold function τ the stopping function

sτ,u : L → X is defined as sτ,u(l) = x if

• τ(lx, |A(l)|) ≤ u(y) for some y ⊵l x

• For all y, z such that z ▷l x and y ⊵l z

τ(lz, |A(l)|) > u(y)

In words, the stopping function selects x if (i) there is something that is seen

(weakly) before x that has utility above the threshold generated by the sequence of

searches up to and including x and (ii) that this is not true for any z that is seen

before x. Note that these conditions imply that s will be at most single valued, while

the assumption that τ(l, |A(L)|) = −∞ implies that s is single valued.

Armed with the stopping function we can define the choice function cτ,u : L → X

which identifies the element from l that will be chosen according to u and τ .

Definition 5. For a utility function u and threshold function τ the choice function

cτ,u : L → X is defined as

cτ,u(l) = arg max
x⊵lsτ,u(l)

u(x)

In words, the alternative chosen from the list l is the highest value alternative up

to and including the alternative that causes search to stop.

Armed with this function, we can define what it means for a data set to have a

sequential search representation.

Definition 6. For some D ⊂ L, an experimental data set ρ : X×X×D → [0, 1] has

a sequential search representation if there exist a utility function u:X → R, and

a distribution over thresholds T ∈ ∆(T ) such that

ρ(x, y, l) =
∑
τ∈T

T (τ)1(cτ,u(l) = x and sτ,u(l) = y)

14



If this is the case, we say that the model {u, T} generates the experimental data

set (ρ,D).

In words, the probability of y being the alternative that triggers stopping and x

being the chosen alternative is equal to the probability of threshold function under

which this is the case.

One of our aims is to identify forms of sequential search that can lead to choice

overload. In order to do so, we define what it means for a model to cause choice

overload

Definition 7. Fix a C ⊂ A and a D ⊂ L such that, for every A ∈ C, LA⊂ D Also

fix a model {u, T}, and let ρ be the experimental data set generated by that model on

D. We say that {u, T} causes choice overload on C if there is a standard choice data

set p on C such that (p, C) is consistent with (ρ,D) and also exhibits choice overload.

We say that a model causes choice overload if it causes choice overload for some C.
We say a model causes choice overload with uniform search if the above holds, with

the added condition that (p, C) can be generated by (π, ρ,D) with πA(l) = 1
|LA| for

all A ∈ C and l ∈ LA. Finally, we say that a threshold distribution T causes choice

overload if {u, T} causes choice overload for some u.

Definition 7 describes two ways in which a model can be described as leading to

choice overload. The first says that there must simply be some probability distribution

over search orders such that, when combined with the data generated by the model, it

leads to choice overload. The second demands the distribution be uniform in all cases.

The reason for the latter definition is that it is possible to imagine situations in which

the former definition can lead to choice overload due to arbitrary and unmodelled

changes in the search order between smaller and larger choice sets.14 In the next

14As a simple example, consider a situation with choice alternatives d, x, y, z, such that

u(x) > u(y) > u(d) > u(z)

Consider also a search model in which the DM always searches the default and one other alterna-
tive. This can lead to choice overload when going from set {d, y, z} to {d, x, y, z} if one assumes that
in {d, y, z} y is always searched after d (and so the default is never chosen), while from {d, x, y, z}
z is always searched after d (so the default is always chosen). However, this model would not lead
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section we will say a search process does not cause choice overload if it does not do

so under the former definition, and will say it does cause choice overload if it does so

under uniform search.

4 Optimal Models of Search

We now present models of optimal search behavior under various different assump-

tions. By characterizing the resulting threshold functions, we can then link these

models to our data using the machinery from section 3. We first show that the

‘standard’ search model, in which the DM faces fixed search costs, optimizes dynam-

ically and does not have to learn about the quality of a choice set, cannot generate

choice overload. We then show how relaxing each of these assumptions can lead to

choice overload, and demonstrate how these explanations can be differentiated in our

experimental data.

4.1 The Standard Search Model

We start by considering the ‘standard’ sequential search problem as described by

Caplin et al. (2011) and many others.

Definition 8 (The Standard Search Problem). The decision maker faces a choice

set of known size N . Initially they know the utility of the default alternative d. They

assume that the utility of each alternative in the choice set is drawn independently

from a probability distribution function f . The DM searches through alternatives one

at a time. Following each search the DM can decide either to stop searching and

choose one of the alternatives already seen, or (assuming there are still unsearched

items) they can pay a fixed cost k to search one more alternative. A strategy is a

mapping from a history of observed items and the size of the set N to the decision

whether to stop or continue search. Once search has concluded the highest utility

to choice overload in this data set when each search order is equally likely, because this would lead
to p(d, {d, y, z}) = 1

2 and p(d, {d, x, y, z}) = 1
3 .
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alternative of those seen is chosen. The aim of the DM is to maximize the expected

utility of the item finally chosen net of costs.

It is well known that the optimal strategy for the standard search problem is a

fixed threshold such that search stops if and only if an alternative with utility higher

than that threshold is uncovered.

Remark 1. For a given cost k, the optimal solution to the standard search problem

can be characterized by a threshold function τ such that τ(l, N) = τk for all non-

terminal points (i.e. all l, N such that |A(l)| ≠ N .)

Proof. See Caplin et al. (2011).

Our first result is that the optimal solution to the standard search problem cannot

give rise to choice overload. To state this, and further results, we will say that a

distribution over threshold functions T is consistent with an optimal model M if

there exists a finite set of costs K15 and a probability distribution P on K such that

T (τ) = P (k|τ(l, N) is optimal given costs k and model M)

In other works, T has a support which is a subset of the set of optimal threshold

functions for the model M .

Theorem 1. Let T be consistent with the solution to the standard search problem.

Then T does not generate choice overload.

We postpone the proof of theorem 1 until section 4.4. However, the logic is

straightforward. Fixing a cost k, if a DM fails to choose the default in some small

set A then it must be that they searched until they found something better. This

implies (i) u(d) < τk and (ii) there exists some x ∈ A such that u(x) > u(d), which

the DM found, either because u(x) > τk, or because the set is completely searched.

Both of these things must also be true in any superset B ⊃ A, so that means that

the default also must not be chosen in the larger choice set. Aggregating over costs

gives the desired result.

15For the increasing search costs model this will be a finite set of cost functions.
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4.2 Increasing Search Costs

The first relaxation of the standard search problem we consider is one in which search

costs increase over time - for example because the DM suffers from fatigue.

Definition 9 (The Search Problem with Increasing Costs). The search problem with

increasing costs is identical to the standard search problem, but rather than a fixed

cost k, the DM has instead a strictly increasing cost function k : N → R, where k(i)

is the cost after searching i alternatives.

First, we show that the optimal solution to the search problem with increasing

costs is a threshold that decreases with the number of searches.

Lemma 1. For a given increasing cost function k(i), the optimal solution to the

search problem with increasing costs can be characterized by a threshold function τ

such that τ(l, N) = τ̂k(|A(l)|) which is strictly decreasing in its argument

See appendix A for proofs.

The fact that the optimal threshold is decreasing as search continues guarantees

that it is possible for the resulting model to generate choice overload.

Theorem 2. Let T be consistent with the solution to the search problem with increas-

ing costs. Then T can generate choice overload with uniform search.

Again we postpone the proof till section 4.4, but the logic is easy to see. Consider

a default utility u(d), a cost function such that τk(1) > u(d) > τk(2), and two

alternatives x and y such that u(x) > u(d) > u(y). In the set {d, x} the default will

never be chosen: because u(d) < τk(1) the DM will always search the first option,

and so x will always be chosen over d. However, in the set {d, x, y} the default will

be chosen half the time under uniform search. Because u(d) > τk(2), exactly one

non-default item will be searched. Half the time this will be x, in which case x will

be chosen, but half the time it will be y, in which case d will be chosen.

We can also use the sequential search representation to make predictions about

what the search model with increasing costs implies for our experimental data set.
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Theorem 3. Let {D, p} be an experimental choice data set generated by a model

{u, T} in which the distribution of threshold functions T is consistent with the solution

to the search problem with increasing costs. Then the following holds:

1. For any list l ∈ D which contains at least one alternative with utility above the

default, the probability of choosing the default depends only on the position of

that element x. Specifically, let x ∈ A(l) be such that

u(x) > u(d),

u(y) < u(d) for all y ▷l x

and define F such that

F = | {y ∈ A(l) such that y ▷l x} |.

Then

ĉ(d, l) =
∑
τ∈T

T (τ)1 (cτ,u(l) = d) (1)

is a function only of F .

2. For any list l ∈ D and alternative x in l, the probability that search has stopped

at or before x ∑
τ∈T

T (τ)1 (sτ,u(l) ⊵l x)

depends only on

(a) The position of x in l

(b) The maximal value of utility of items that occur at or before x in the list l

max
y⊵lx

u(y)

and is increasing in both values
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This theorem lays out the key markers of behavior we should see if increasing

search costs are at the root of choice overload: The only determinant of whether the

default is chosen is the position of the first above-default alternative in the list, and

the whether or not search has stopped at a given point is determined only by how

many alternatives have been searched and the maximum value that has been seen

so far. This theorem will help us differentiate between increasing search costs and

alternative explanations of choice overload in our experimental data.16

4.3 Search with Static Optimization

The standard search model assumes that DMs engage in dynamic optimization: their

decision whether to continue to search or not is based on information they receive as

they search. Early models of search assumed instead a model of static optimization:

a DM chose in advance how many alternatives they would search through prior to

beginning search (see for example Stigler, 1961). Such models are significantly easier

to solve, and recent work has suggested that they may do a good job of describing

search behavior in market settings (e.g. De Los Santos et al., 2012). We next define a

model of search with static optimization and show that it can lead to choice overload.

Definition 10 (The Search Problem with Static Optimization). The search problem

with static optimization is identical to the standard search problem, but rather than

choosing a stopping function contingent on the values of the alternatives seen, the

DM must choose in advance how many alternatives they wish to search.

Any given cost level will then give rise to an optimal number of alternatives for

the DM to search.

Remark 2. For a given cost k, the optimal solution to the search problem with static

optimization can be characterized by an integer nk and a threshold function τ such

16It is tempting to conclude that the increasing search cost model should lead to an increase in
the probability of stopping as one proceeds down the list (rather than the cumulative probability
of having stopped search). However this is not true. Imagine a cost function that rises from 0 to
1,000,000 between period 1 and 2, then to 1,000,001 in period three. Assuming a small variance in
f , all search would stop in period 1, and almost none would stop in period 2.

20



that τ(l, N) = τ̂ sk(|A(l)|), with

τ̂ sk(|A(l)|) =

∞, if |A(l)| ≤ nk

−∞, if |A(l)| > nk

for all non-terminal points (i.e. all l, N such that |A(l)| ≠ N .)

Proof. See Stigler (1961).

In turn, such a threshold function can give rise to choice overload.

Theorem 4. Let T be consistent with the solution to the search problem with static

optimization. Then T can generate choice overload with uniform search.

The logic of the theorem is similar to that of theorem 2, with formal proofs again

postponed to section 4.4.

The behavioral implications of the search problem with static optimization are

similar to that of the model with increasing costs, with one important difference: the

probability of search stopping should depend only on the position in the list, not the

values seen so far.

Theorem 5. Let {D, p} be an experimental choice data set generated by a model

{u, T} in which the distribution of threshold functions T is consistent with the solution

to the search problem with static optimization. Then the following holds:

1. For any list l ∈ D which contains at least one alternative with utility above the

default, the probability of choosing the default depends only on the position of

that element17.

2. For any list l ∈ D and alternative x in l, the probability that search has stopped

at or before x depends only on the position of x in l.

17See theorem 3 for a formal definition.
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4.4 Proofs of Theorems 1, 2 and 4

We bring together the proof of theorems 1, 2 and 4 because they can all be seen as

manifestations of the same underlying principle. In each case, the optimal threshold

strategies are what we term search length dependent - the threshold depends

only on the number of alternatives that have been searched - not the value of those

alternatives, nor the size of the choice set. It is possible to characterize what types

of search length dependent threshold functions can lead to choice overload.

Definition 11. A threshold function τ is Search Length Dependent if τ(l, N) =

τ(l′,M) if |A(l)| = |A(l′)|, |A(l)| ≠ N and |A(l′)| ≠ M . In such cases the the

threshold is a function only of the number of alternatives that have been searched, and

we use the notation τ̂(n) for the threshold when n alternatives have been searched.

We say that a Search Length Dependent threshold function is

• Increasing if τ̂(n) ≥ τ̂(m) for n > m with the inequality strict for some m > 1

(assuming all alternatives have not been searched)

• Decreasing if τ̂(n) ≤ τ̂(m) for n > m with the inequality strict for some m > 1

• Constant if τ̂(n) = τ̂(m) for n < m (assuming all alternatives have not been

searched).

We say a threshold distribution T is increasing (decreasing, constant) search length

dependent if its support contains only increasing (decreasing, constant) search length

dependent threshold functions.

To prove the relevant theorems, we make use of the following lemma, which states

that search length dependent thresholds can generate choice overload if and only if

they are decreasing. As the standard search problem gives rise to a constant search

length dependent model, while search with increasing costs and search with static

optimization give rise to decreasing search length dependent models, theorems 1, 2

and 4 follow immediately.

Lemma 2. A search length dependent threshold T can generate choice overload with

uniform search if it is decreasing. Otherwise it cannot generate choice overload.
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4.5 Search with Learning

A third, and perhaps most interesting deviation from the standard model is the

possibility that the decision maker does not know the distribution of values in a

choice set before they begin searching. Imagine, for example, that a DM is searching

through records in a record store. A priori, they do not know whether this is a

high quality record store, with a high proportion of good records, or a low quality

record store with relatively few good albums. We would expect the DM to update her

beliefs about the quality of the record store as she searches, and this should affect her

decision whether or not to continue searching: if they see a lot of bad records they

may conclude that this is a low quality record shop, and so stop searching.

In this section we formalize this intuition, and show how it can lead to choice

overload. We do so in a relatively simple set up, in which the DM believes that the

value of alternatives are being drawn from one of two possible distributions. This

matches our experimental setting, and suffices to show that search with learning can

cause choice overload. We also believe most of the insights we draw would generalize

to more complex learning environments.

Definition 12 (The Search Problem with Learning). The search problem with learn-

ing is identical to the Standard Search Problem, but instead of believing that alterna-

tives are drawn from a distribution f , the DM believes that the utility of all alternatives

in a choice set are either drawn from distributions f(x|µ) and f(x|µ) with same sup-

port [a, b] ⊂ R. They are both absolutely continuous, and satisfy the strict Monotone

Likelihood Ratio property, with F (x|µ) first order stochastically dominating F (x|µ).
Thus F (x|µ) is a “good” distribution, while F (x|µ) is a “bad” distribution. Initially,

the DM assigns probability µ0 that values are drawn from distribution f(x|µ).

In appendix B we characterize the properties of the optimal solution to the search

problem with learning, the key features of which are summarized in the following

lemma.

Lemma 3. For a given cost function k, the optimal solution to the search problem
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with learning can be characterized by a threshold function τ such that

τ(l, N) = τk(µ(l), n)

where µ(l) is the probability that the values in the set have been drawn from distribution

µ, given sequence l and Bayes’ rule, and n = N − |A(l)| is the number of items

remaining to be searched. τk(µ(l), n) is weakly increasing in both arguments. We say

a cost k guarantees search if τk(µ, 1) > a for all µ. In this case, τk(µ(l), n) is strictly

increasing in its first argument.

The search problem with learning can generate choice overload. To see why,

consider the following example. There are three alternatives d, x1, x2, and the problem

is paramaterized such that u(d) < τk(0.5, 1), so that search begins in a set containing

d and x2. Assume further that u(x2) > u(d), implying that p(d, {d, x1}) = 0. Now

consider what happens if the DM is faced with the list dx1x2. Given that τk(0.5, 2) ≥
τk(0.5, 1), we know that search will continue until at least x1. What happens at this

stage will depend on both beliefs and y = max {u(x1), u(d)} . Figure 1 shows the

optimal strategy in µ, y space for the case in which cost is k = 1/8 and the two

distributions are normal with unit variance and means 0 and 1. The optimal strategy

takes the form of a threshold, shown by the upward sloping solid black line. For

combinations of µ and y that fall above the line search should stop, below the line it

should continue. This follows from lemma 3 - the optimal strategy is a threshold on

y which is increasing in µ.

Where the DM finds themselves in this space will depend on the value of u(x1).

For u(x1) < u(d), increases in the value of u(x1) increase µ but not y: higher values

make it more likely that values are drawn from the good distribution, but do not

increase the value of the best thing seen. For u(x1) ≥ u(d), increasing in the value of

u(x1) increase both µ and y

The non-solid line on figure 1 shows the locus of possible points in µ, y space that

can occur for different values of u(x1). It identifies three regions. For high values

of u(x1), the dashed part of the line, search will stop: the DM believes it is likely
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Figure 1: Optimal Strategy in the Search Problem with Learning

that the alternatives are drawn from the good distribution, but the value of u(x1) is

so high that further search is not worthwhile. For intermediate values of u(x1), the

dash-dotted part of the line, search will continue: beliefs are high enough, and the

value of the best thing seen low enough, that further search is worthwhile. However,

for very low values of u(x1), the dotted part of the line, search again stops. Observing

very low values of u(x1) leads the DM to believe it very unlikely that the values are

being drawn from the good distribution. This in turn reduces the perceived value of

search to the point that it is better to stop.

It is this third region that distinguishes the search problem with learning from

the standard search problem, and can lead to choice overload. In the standard search

problem, search can only be stopped because the DM observes a high value alternative.

With learning, search can also stop because the DM observes a low valued alternative.

In the above example, if u(x1) is low enough then the DM will stop searching because

beliefs become low enough that the threshold for continuing to search falls below the

utility of the default. This means that the superior alternative u(x1) is never found,

resulting in choice overload.

This intuition is formalized in the following theorem.

Theorem 6. Let T be consistent with the optimal solution to the search problem with

learning with costs that guarantee search. Then T can generate choice overload with
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uniform search.

Finally, we characterize the behavioral implications of the search model with learn-

ing. Ideally, we would like a behavioral characterization along the lines of theorem

3. However, unlike the search model with increasing costs, in which the threshold

depends only on the number of items searched, the search model with learning im-

plies the threshold depends on beliefs and the number of alternatives left to search.

In order to characterize the behavior of this model along a single dimension, which

will be convenient for our later empirical work, we define the notion of the minimum

cost that induces search to stop by a particular point in a list.

Definition 13. Let l ∈ L be a list and fix a utility function u. For any x ∈ A(l), the

minimum cost that induces stopping by x is defined as

ml,u(x) = min {k ∈ R|sτk.u(l) ⊵l x}

where τk is the solution to the search problem with learning for costs k.18

This function combines the inputs to the stopping rule - beliefs and the number

of alternatives remaining to search - into a single number. Note that, assuming u is

observable and we know the process by which values are generated, we can calculate

m for any l and x.

Using this definition, we can generate behavioral predictions for the search model

with learning

Theorem 7. Let {D, p} be an experimental choice data set generated by a model

{u, T} in which the distribution of threshold functions T is consistent with the solution

to the search problem with learning. Then the following holds:

1. For any list l ∈ D which contains at least one alternative with utility above the

default, the probability of choosing the default depends only on ml,u(x) where x

is the element immediately proceeding the first above-default element.

18That ml,u(x) is well defined comes from the fact that, for high enough costs, search will never
start (and so the set is non empty), and assuming that, in the case of ties, search will stop (and so
the set is closed).
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2. For any list l ∈ D and alternative x in l, the probability that search has stopped

at or before x depends only on ml,u(x).

4.6 Contextual Inference and Decision Avoidance

We have so far established that three variants of the standard search model can lead

to choice overload: increasing search costs, static optimization and learning. In this

section we contrast these search-based models of choice overload with the two current

leading explanations: decision avoidance and contextual inference

Decision avoidance is a concept that has a long history in the psychology literature

(see Beattie et al. (1994) and Tversky and Shafir (1992) for early examples and

Anderson (2003) for a review), as well as a shorter one in economics and decision

theory (see for example Dean (2008), and Gerasimou (2018, 2020). It posits that,

when faced with a difficult decision, people may exhibit a tendency to disengage with

it - for example by postponing it or sticking with a default. Because large choice sets

are often seen as complicated or difficult, this can lead to choice overload.

In order to capture the concept of decision avoidance within our framework, we

consider a model in which the threshold function falls as the number of alternatives

left to search increases. Unlike the other threshold functions we have discussed, this

is not microfounded in some underlying search problem. However, we believe that it

captures the idea of decision avoidance: when choice sets get larger, a DM is more

willing to disengage from the decision by stopping search. In particular, this means

that the DM will be more willing to stick with the default in larger choice sets.

Definition 14. A threshold function τ exhibits decision avoidance if τ(l, N) =

τ d(N−|l|) for all l, N , strictly decreasing in its argument for all non-terminal points.

Before discussing the implications of decision avoidance we formalize a model of

contextual inference in our setting. Introduced by Kamenica (2008) (see also Kuksov

and Villas-Boas (2010) and Nocke and Rey (2021)), contextual inference assumes

that DMs form beliefs about the quality of alternatives in a choice set based on the

context, and in particular the number of alternatives. In order to close the model,
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it is typically assumed that the DM forms beliefs based on the behavior of profit

maximizing firms. Choice overload can occur if beliefs are such that larger choice sets

are associated with lower perceived quality.

The following definition captures the concept of contextual inference by modifying

the standard search problem to allow the belief distribution f to depend on the

number of alternatives in the set.

Definition 15 (The Search Problem with Contextual Inference). The search problem

with contextual inference is identical to the standard search problem, but instead of

believing that alternatives are always drawn from a distribution f , the DM believes

that the distribution depends on the size of the choice set, with fn the distribution of

alternatives if the set size is n. If n < m, then fn strictly first order stochastically

dominates fm.

It is easy to see that the optimal solution to the search problem with contextual

inference will be to employ, in any given search problem, a fixed reservation threshold

that depends on search costs and the size of the choice set.

Lemma 4. For a given cost function k, the optimal solution to the search problem

with contextual inference can be characterized by a threshold function τ such that

τ(l, N) = τ Ik (|N |)

Where τ Ik is strictly decreasing in its argument

Our first result is that both decision avoidance and contextual inference can lead

to choice overload.

Theorem 8. Let T be consistent either with decision avoidance or with the solution

to the standard search problem with contextual inference. Then T can generate choice

overload with uniform search.

While search-based explanations on the one hand and contextual inference and

decision avoidance on the other both give rise to choice overload, the mechanism by
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which they do so is very different in a way that is observable in an experimental

data set. As the following theorem makes clear, the former leads to choice overload

if, in the larger choice set, search starts but stops before an alternative better than

the default is found. In contrast, the latter case, choice overload only occurs because

search never starts in the larger choice set.

Theorem 9. Let the threshold function τ be consistent with either decision avoidance

or the solution to the search problem with contextual inference. Then for any two

choice sets A ⊂ B, τ can generate choice overload only if sτ (l) = d for every l ∈ LB.

As a result, for any T that is consistent with either of those two models and any set

A which contains an alternative better than the default

p(d,B)− p(d,A) =
∑
l∈LB

πB(l)ŝ(d, l)−
∑
l∈LA

πA(l)ŝ(d, l)

where πA ∈ ∆(LA) and πB ∈ ∆(LB) are the distributions over sequences used to

generate p(., A) and p(.B) respectively.

Let the threshold function τ be consistent with either search with increasing costs,

static optimization or learning. Then for any two choice sets A ⊂ B, τ can generate

choice overload only if, for some l ∈ LB, d ▷l sτ (l) ▷l xl where xl is the first above-

default alternative in l. As a result, for any T that is consistent with either of these

models and any set A such that |A| = 2 and which contains an alternative better than

the default

p(d,B)− p(d,A) ≤
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl|

ŝ(y, l)

where πB ∈ ∆(LB) is the distribution over sequences used to generate p(., B).

A second behavioral difference between the two classes of models is whether list

order is important. As previous theorems have demonstrated, under search based

models, for sets that contain an above default-alternative, the probability of choosing

the default depends on the position of that alternative in the list. This is not true

for models of contextual inference, as the following theorem demonstrates
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Theorem 10. Let {D, p} be an experimental choice data set generated by a model

{u, T} in which T is consistent with either decision avoidance or optimal behavior in

the search model with contextual inference. Then, for any set A which contains an

above default alternative

ĉ(d, l) = ĉ(d, l′) for all l, l′ ∈ LA

Specifically, the probability of choosing the default does not depend on the position

of the first above-default alternative.

5 Experimental Design

We now describe the results of an experimental task that allows us to compare search-

based explanations for choice overload to decision avoidance and contextual inference,

and to identify which of the various search channels are important in causing choice

overload.

Our experimental design needed to satisfy a number of requirements. First, we

needed choice alternatives that had a clear preference ranking if subjects fully inter-

nalized their values, yet requited cognitive effort to uncover those values. Our test of

choice overload relies on the former, while without the latter it would be too easy for

the subject to simply choose the best option in each choice set. Second, we required

a design that allowed us to control the order in which subjects searched, and observe

their decision to stop searching. This is necessary to generate the experimental data

set of definition 1. Finally, and unlike previous choice overload experiments, it was

important for us to control the beliefs of the subject about the distributions from

which values were drawn - as our theory demonstrates, these beliefs should be an

important determinant of behavior.

In the following sections we explain how our design fulfills these criteria.
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5.1 The Experimental Environment

The basic choice problem is similar to that in Caplin et al. (2011) and Dean et

al. (2022): Subjects choose between options which represent different amounts of

experimental points. The value of each option is represented by a sum (written out in

words), meaning that, while the ranking of alternatives is known to the experimenter,

it requires effort on the part of the subject to understand each value.

In each choice problem, the subject chooses between a default option (which has a

value of 6 experimental points) and between 1 and 20 other alternatives. The value of

the default option is known: it is the same in each choice problem, and it is displayed

at the top of the screen as a degenerate sum. The value of the other alternatives are

not initially known.

In order to allow us to identify which alternatives the subject has searched, all

non-default alternatives are initially obscured. By pressing a button, the subject can

uncover each alternative in a pre-determined order. We therefore know the order of

search. Moreover the set of uncovered alternatives allows us to approximate the set of

searched alternatives. Specifically, it provides an upper bound on the set. We can be

sure that any alternative that was not uncovered has not been searched by the subject.

It is possible that subjects uncover alternatives, but do not internalize their values (for

example, they could keep clicking until they had uncovered all the alternatives, then

process their values). In order to reduce this possibility, we introduce a short delay

of about 3 seconds after each reveal before the next alternative can be uncovered.

When subjects are ready to make their choice, they can click on their preferred

alternative and press ‘choose’. Figure 2 shows a screenshot from a typical choice

environment, in which some alternatives have already been uncovered.

At the end of the experiment, one choice problem was selected at random for

each subject, and they were paid based on the option they chose in that situation.

Experimental points were converted to money at a rate of $0.50:1. This payment was

added to a $3 participation fee.

A full set of instructions is available in the appendix.
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Figure 2: Typical Screenshot

5.2 Item Values and Beliefs

A key input into the theory from section 4 is the beliefs of the decision maker over

the distribution of values from which choice alternatives are drawn. In most choice

overload experiments these parameters of this process are not made explicit to the

subject, so it is hard to know what these beliefs might be (for example, in Iyengar

and Lepper (2000), subjects are not informed about how the jams are selected). In

order to provide a controlled test of our theory we tell subjects exactly how the values

of the alternatives they are choosing between are generated.

In section 4 we introduced three possible mechanisms by which search could gen-

erate choice overload - distribution uncertainty, increasing search costs and static

optimization. In our baseline treatment we consider an environment in which the

subject do in fact have uncertainty about the distribution from which values are

drawn. This provides an situation in which all three of our identified channels could,

in principle be a factor in causing choice overload. Given that previous demonstra-

tions of choice overload have not provided information on how values were selected,

we would also argue that decision uncertainty is a ubiquitous feature of such exper-

iments. Including it in our study therefore makes it more comparable to previous

work.

For completeness, we also run a second treatment in which we turn off distribution

uncertainty, the results of which are reported in section 6.6.
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(a) ‘Bad’ Distribution (b) ‘Good’ Distribution

Figure 3: The two possible distributions of values for the learning treatment

5.2.1 Baseline Treatment

In the baseline treatment subjects are told that the values of the alternatives are

drawn from one of two distributions. Each distribution is geometric (truncated at

20). The ‘good’ distribution has λ = 0.25, while the ‘bad’ distribution has λ = 0.5.19

The PDF of each of these distributions is shown in Figure 3. The same figures were

also included in the experimental instructions. Subjects were also made to draw

values from the two distributions as part of the instructions.

Prior to each choice problem the subject was reminded that the values they faced

in that choice problem would be drawn from one of these distributions, and a priori

each was equally likely. The instructions made it explicit that all alternatives in

each choice problem were drawn from the same distribution, but that different choice

problems may come from different distributions. They also made it clear that subjects

could update their beliefs about which distribution was more likely by observing the

values they uncovered - i.e. that there was an opportunity for learning.

Because we are explicit about the procedure by which values were drawn, we

can calculate the beliefs that a Bayesian subject should have following any observed

sequence of draws. We make heavy use of this fact in the analysis that follows.

The specific procedure for generating the choice sets faced by each subject was

as follows. Prior to the start of the experiment, 100 values were drawn from each

distribution. Sums were generated to equal each of these values using the procedure

19In the instructions the distributions were referred to as A and B, rather than ‘good’ and ‘bad’.
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of Caplin et al. (2011).20 Each subject faced 10 choice problems: 4 with 2 options (the

default plus one other alternative), 2 with 11 options, 2 with 16 options and 2 with

21 options. In each choice problem it was equally likely that the good distribution

or bad distribution would be used. The relevant number of options was then drawn

randomly from the chosen distribution, and presented in a random order. The order

in which choice sets were presented was also randomized. Randomization occurred at

the subject level, meaning each subject faced a different set of choice problems. This

random assignment of choice problems will be important in later analysis.

5.2.2 No-Learning Control

The no-learning control proceeded exactly as the learning treatment. The only differ-

ence is that subjects were told that in each decision problem they would face values

drawn from a single distribution which was the average of the two distributions A

and B from the learning treatment. They were also told explicitly that this meant

that the values they had so far uncovered would not help them predict the values of

other alternatives in the choice set.

5.3 Implementation

The experiment was run on Prolific, a platform that helps researchers recruit partici-

pants for their online research. An online platform was chosen to make it easy to get

data from a large number of subjects, each of whom needed to answer only a limited

number of questions. Subjects are restricted to those located in the USA and fluent

in English. The experiment itself was programmed in JavaScript with custom plugins

for the jsPsych library (de Leeuw, 2015). The experiment and subsequent analysis

was pre-registered using the Open Science Framework.21

307 subjects in the baseline treatment and 314 in the no-learning control success-

fully finished the experiment. During the course of the instructions, subjects were

asked to complete 5 comprehension questions. Since our theoretical models consider

20This set of options was the same for all subjects.
21osf.io/3jfpn
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optimal rational behavior, it was important to have subjects properly understand the

task. If they got any question wrong more than 2 times then they were routed away

from the experiment and could not finish it. This happened to 71 and 72 subjects in

the baseline and no-learning treatments respectively. Subjects also faced two practice

rounds before the 10 ‘live’ rounds that constitute the experiment.

6 Results

We use the data from the above experiment to answer six questions, and so tease out

the role of the various different drivers of choice overload identified in section 4.

First we establish where there is indeed choice overload in our baseline environ-

ment, and so we have a suitable test bed to differentiate between different theories of

choice overload.

Second, we measure the relative importance of ‘classic’22 vs search based choice

overload. We do so by identifying instances in which subjects choose the default

option when a better alternative was available, and categorizing them by whether

subjects had begun the search process, or chosen the default without looking at any

other alternatives. The former is consistent with search based choice overload, while

the latter is consistent with contextual inference or decision avoidance.

Third, we perform another test to differentiate between classic and search based

models. We examine the role of the position of the first above-default alternative in

determining whether the default is chosen. Search based models predict that default

choice should be more likely if above default alternatives appear later in the search

process, while classic models do not.

Fourth, we test for the impact of distribution uncertainty on default choice while

controlling for the effect of fatigue through search order position.

Fifth, we use a behavioral model to estimate whether learning, the number of

options searched, and the determinants of the decision to stop searching, allowing us

to differentiate between the three models of search proposed in section 4.

22i.e. contextual inference and decision avoidance.
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Table 1: Default Choice by Set Size

Set Size % Default Choice N
2 9 53
11 38 211
16 41 273
21 44 274

Percentage of sets that contained at least
one item better than the default in which the
default was chosen.

Finally we compare the results of our baseline treatment to that of the no learning

control.

6.1 Choice Overload

First, we determine the extent of choice overload in our baseline treatment. In order

to do so, we build on the approach of Dean et al. (2022), and look for specific subsets

and supersets such that default choice is higher in the latter than in the former.

Given that we know what the rankings of alternatives should be, we focus our

attention on sets which contain an option which is better than the default. Sets

which have no such option should have high default choice even in small choice sets,

and so have little opportunity for choice overload. In table 1 we show the fraction

of sets which contain an alternative better than the default in which the default is

chosen. In lemma 5 in appendix C we show that, if a stochastic choice function does

not exhibit choice overload then default choice in such sets should be non-increasing

in set size.

Table 1 shows that default choice is between 29 and 35 percentage points (pp)

higher in sets of size greater than 2 than is is in sets of size 2. In order to confirm

statistical significance, table 2 reports the results of the regression

chose defaulti,j = α +
∑

k∈{11,16,21}

βk1(sizei,j = k) + εi,j

where i is the subject, j is the round, chose defaulti,j is a variable that takes the
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Table 2: Regression Results

Default Choice

S=11 0.285***
(0.050)

S=16 0.316***
(0.050)

S=21 0.347***
(0.052)

Constant 0.094***
(0.041)

R2 0.028
N 811

OLS regression of default choice
on set size dummies. Standard er-
rors clustered at the subject level.
* significant at 10% level, ** signif-
icant at 5% level, *** significant at
1% level.

value 1 if the default was chosen in that observation, sizei,j is the size of the choice set

in that observation and 1 is the indicator function. Again, we run the regression only

on sets that contained an above-default alternative. Standard errors are clustered at

the subject level. We report results from Ordinary Least Squares (OLS) regressions,

though a logit specification gives equivalent results.

Table 1 confirms that we observe choice overload in our baseline specification.

Default choice is higher at in the size 11, 16 and 21 choice sets relative to the size 2

choice set at the 1% level. Tests of linear restriction reveal no difference in default

choice probability between the size 11, 16 or 21 choice sets.

6.2 Classic vs Search Based Choice Overload

We next establish the relative importance of classic versus search based explanations

for choice overload. As we show in theorem 9, decision avoidance and contextual

inference lead to choice overload which is due to subjects failing to engage with larger

choice sets - specifically not searching any alternatives. In contrast, search based

37



models predict that overload is due to subjects starting to search, but then stopping

before they find anything better than the default. To estimate the relative importance

of choice overload due to these factors, we again restrict attention to sets in which

there is an alternative available which is better than the default. We can place each

occasion in which the default was still chosen into one of three categories.

1. No options are searched (Classic)

2. Search starts, but stops before an option better than the default is found

(Search)

3. An option better than the default is uncovered, but the default is still chosen

(Mistakes)

The third category, which we term ‘Mistakes’, in fact covers two types of behavior.

The first is genuine calculation errors - i.e an alternative was considered, but its

value was miscalculated. Such errors lie outside of the scope of the theory presented

in the proceeding sections. A second possibility is that subjects uncovered more

alternatives than they in fact considered, meaning that we have overestimated the size

of the consideration set. From this second perspective, observations in the ‘Mistakes’

category should be in either the Classic or Search categories, but we do not know

which.

Table 3 reports this breakdown for each set size using data from our baseline

treatment. In the final row it reports the difference between the fraction of time each

behavior was exhibited in the size two choice set versus in sets of greater than size two.

This can then be thought of as the contribution of each category to choice overload.

This analysis suggests that Search accounts for the highest fraction of choice overload,

increasing default choice by 16pp between size 2 and greater than size 2 sets (50% of

the total choice overload). This is followed by Mistakes, with Classic accounting of

only 4pp (12.5%) of the increase.
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Table 3: Categorizing Choice Overload

Size Choose Default Classic Search Mistake N
2 9% 2% 0% 8% 53
11 38% 7% 10% 19% 211
16 41% 5% 17% 21% 273
21 44% 5% 19% 20% 274

s > 2 minus s = 2 32% 4% 16% 12%

For each choice set size, reports the fraction of sets that contain an above-default option
in which the default was chosen (Chose Default), then categorizes these as occurring due
to decision avoidance/contextual inference (Classic), search based processes (Search) or
calculation errors (Mistakes).

6.3 The Effect of Search Order on Default Choice

We next examine our data for another point of difference between classic and search

models. As we show in theorem 10, search order matters for the choice of default in

the latter case, but not in the former.

We can test this prediction due to the fact that each choice set in the experiment

is generated randomly, creating variation in the order in which the first above-default

alternative appears. Figure 4 shows the probability that the default is chosen, group-

ing sets by the position of the first above-default alternative and using data from

rounds with sets size greater than 2 in our baseline treatment. It shows a clear up-

ward trend - default choice is more likely in sets in which the first above-default

alternative appears later. This pattern is confirmed by regression analysis. An OLS

regression of default choice on the position of the first above-default alternative, with

standard errors clustered at the subject level, returns a coefficient significant at the

0.01% level.23

6.4 Separating Distribution Uncertainty from Increasing Costs

The results of the previous two subsections indicate that search channels are impor-

tant in determining default choice. However, they do not allow us to understand

23The coefficient is essentially unchanged if dummies for set size are included in the regression.
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Figure 4: Effect of position of first above-default alternative on default choice. Bars
show the probability of default being chosen. Error bars represent standard errors.

which features of search are important: both the increasing search costs and distri-

bution uncertainty would predict that sets where the first above-default alternative

appear later should see more default choice.

We address this issue by again making use of random variation in the search sets

that subject’s face. The basic idea is as follows. Consider two sets in which the first

above-default alternative appears after position k, but which contain different values

prior to that. Set A contains lower values in these early positions than does set B.

As per theorem 3, the increasing search cost model would imply that, on average,

default choice should be the same in these two sets - the only thing that determines

default choice is the position of the first above-default alternative. In contrast, the

distribution uncertainty model would imply that default choice should be more likely

in set A than set B, as the subjects would have more pessimistic beliefs by position

k and so be more likely to quit searching.

In order to test for such effects, we run a regressions of the form

chose defaulti,j = α + βmin costki,j + εi,j

for k = 1...15. For each of these regressions, we use data on choice sets of size greater

than K, and include all observations in our baseline treatment for which there is (a)
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Table 4: The Effect of Distribution Uncertainty

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.14 0.10 650 0.61 0.67 650
2 -0.37* 0.20 564 -0.67 0.48 564
3 -0.51 0.32 508 -0.59 0.40 508
4 -0.61 0.45 436 -0.44 0.39 436
5 -0.35 0.60 379 0.00 0.38 379
6 -0.49 0.80 317 0.04 0.39 317
7 -1.37 1.06 261 -0.29 0.38 261
8 -2.92** 1.22 207 -0.59 0.39 207
9 -3.58** 1.50 172 -0.84** 0.40 172
10 -3.85* 1.97 132 -1.14*** 0.43 132
11 -5.22** 2.32 107 -1.65*** 0.46 107
12 -8.99*** 2.50 81 -1.78*** 0.51 81
13 -8.10* 4.50 64 -1.66*** 0.54 64
14 -11.37* 6.07 45 -1.98*** 0.58 45
15 -11.03 6.82 30 -1.61** 0.72 30

Each line reports the coefficient of a regression of default
choice on minimum beliefs (left hand panel) and minimum
costs (right hand panel) measured at period k, looking
only at sets in which the first above-default alternative
appears after position k. * significant at 10% level, **
significant at 5% level, *** significant at 1% level.

an alternative that is above the default value (b) the choice set is generated using

values from the high quality distribution and (c) the first such alternative appears

after position k. min costki,j is the minimum cost variable introduced in definition

13, which records the lowest cost such that an optimal decision maker would stop

searching at or before position k. As before we estimate this model using OLS with

errors clustered at the subject level.24

Recall that a high value of the minimum cost variable means that only people with

high search costs should stop searching before this point. Thus, we would anticipate a

negative relationship between minimum costs and default choice: a high value of the

24In the preregistration plan we mistakenly reported that we were intending to use a discretized
version of the minimum cost variable. This provides similar results. For completeness we have
included these results in table D.1 in appendix D.
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minimum cost variable means more people should continue searching, and so have a

chance of finding the above-default alternative.

The minimum cost variable combines information on both beliefs and the number

of items remaining to be searched derived through an optimizing model. For trans-

parency we repeat our analysis with a ‘minimum beliefs’ variable, which records the

lowest level of belief that values are being drawn from the high quality distribution

prior to point k. Again, we would expect to see a negative relationship between min-

imum beliefs and default choice: a higher probability that the choice set is of high

quality should raise the stopping threshold, and thus make it less likely the default is

chosen.

Table 4 reports the results of these regressions. It shows that both minimum

beliefs and minimum costs are significantly related to default choice, predominantly

in later rounds.

6.5 Determinants of Stopping Behavior

The analysis of section 4 makes it clear that, to differentiate between the three variants

of the search model, it is useful to know the determinants of the decision to stop

searching. In order to perform such analysis, we will reformulate our data. Recall,

that, for each choice set, we observe the sequence of alternatives that the subject could

see, and the point at which they stopped searching. We will now take an observation

to be stopping behavior when faced with the kth alternative in the search order shown

to subject i in round j.

In order to understand the determinants of the subject’s decision to stop searching

we run the following regression

stopki,j = αi + β1above
k
i,j + β2k + β3min costki,j + εki,j (2)

where stopki,j is a dummy that takes the value 1 if the subject has stopped searching at

or before observation k, aboveki,j is a dummy that takes the value 1 if the DM has seen

an alternative above the value of the default at or before alternative k and min costki,j
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is the minimum cost variable calculated for alternative k in choice set j for person i.

We estimate the regression using OLS, including subject fixed effects and standard

errors clustered at the subject level, using data from our baseline treatment. We

restrict to observations which are not the last one in the search sequence (in which

case the subject must de facto stop searching), and choice sets in which the subjects

began the search process.

For transparency, we also consider a regression specification in which the determi-

nants of the minimum cost variable - minimum beliefs and the number of items left

to search - are included separately in the regression.

Distribution uncertainty would imply that the minimum cost variable (or mini-

mum beliefs and items remaining to search) is negatively related to stopping. The in-

creasing costs model would imply that k should be significantly and positively related

to stopping, while the simultaneous search model implies that the ‘above’ variable

should not be predictive of stopping behavior.

Table 5 shows the results for both specifications. All of the dependent variables

are highly significant, offering support for the distribution uncertainty and increasing

costs channel, but not the simultaneous search model.

6.6 No Learning Control

In appendix D.1 we repeat the analysis above for the No Learning control treatment

in which we attempt to switch off distributional uncertainty. One challenge in doing

so is that a subject who has internalized our instructions should have beliefs that are

invariant to the values they have seen. In order to provide a more interesting test,

we construct minimum belief and minimum cost variables as if the subject’s believed

they were in the Baseline treatment. This allows us to test whether subjects are more

likely to stop searching and choose the default if they have seen low value alternatives.

The results are broadly in line with what we would expect: overload still exists

in the No Learning control treatment, but it is smaller, and appears less related to

search and distribution uncertainty.
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Table 5: Determinants of Stopping Search

Searched Stopped

(1) (2)

Min. Cost -0.713***
(0.072)

Min. Beliefs -0.397***
(0.041)

k 0.031*** 0.029***
(0.001) (0.002)

Items Remaining -0.007***
(0.002)

Above 0.060*** 0.084***
(0.017) (0.017)

Const 0.329*** 0.322***
(0.018) (0.026)

R2 0.542 0.537
N 24,182 24,182
Subject f.e. Yes Yes

Dependent variable is whether or not search has
stopped by given observation. OLS regression
with standard errors clustered at the subject level
* significant at 10% level, ** significant at 5%
level, *** significant at 1% level.
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Tables D.2 and D.3 show that there is still choice overload in the No Learning

control, though less than in the baseline treatment. Regression analysis confirms

that there is significantly less overload in the control treatment, albeit due to higher

default choice in the size 2 treatment. Tables D.4 and D.5 show that there is more

‘Classic’ relative to search based choice of the default in the no learning treatment.

There also appears to be somewhat fewer mistakes. Figure D.1 shows that there is

again a relationship between the position of the first above-default alternative and

default choice, albeit weaker in the baseline treatment. Table D.6 shows either no

relationship or a positive relationship between minimum beliefs or minimum costs and

choice of default, once the position of the first above-default alternative is controlled

for. Table D.7 shows that minimum beliefs and the number of alternatives remaining

are not predictive of stopping search. Minimum costs are still predictive, but the

relationship is much weaker than the baseline treatment.

6.7 Discussion and Conclusion

We have demonstrated, both theoretically and experimentally, that search theoretic

concerns can drive choice overload. Both increasing search costs and uncertainty

mean that, in a choice set with many mediocre options, a decision maker will fail to

find a high quality alternative.

These results lead to two further questions: How important are each of these

forces in choice situations outside the laboratory, and what does this mean for op-

timal ‘choice architecture’ - or the design of the decision making environment? We

believe that both are important topics for future research. Our expectation is that

both fatigue and uncertainty should, if anything, be more important for ‘real world’

decisions. Take, for example, the job of selecting a retirement savings plan from a

collection offered by an employer. It seems likely that users would have a great deal of

uncertainty about how these plans had been selected, particularly those newly arrived

at the company. Moreover each plan would require significant effort to understand.

Thus we would expect the two channels we have identified to play an important role

in their decision making.
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A model incorporating the two elements we have identified could also be used

to evaluate the welfare effects of different choice environments. At a basic level, it

could be used to determine which and how many alternatives should be included in

a choice set. Assuming that there is uncertainty or heterogeneity in the tastes of

the consumer, then there is a trade off when adding options which may be good for

some people, but bad for many. A model incorporating the forces we identify will

give new answers to these questions. The same model could be used to evaluate more

exotic options, such as ranking the alternatives (and therefore giving a free signal

about their quality), or presenting alternatives in smaller groups (for example as in

Besedeš et al. (2015). Unique amongst the models we (and others) have considered,

distribution uncertainty means that the composition of the choice set, and the order

in which they are seen, can affect stopping behavior. This gives a richer set of tools

for policy makers to consider when designing the choice environment.
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A Proofs

A.1 Proof of Lemma 1

Proof. First, define for each number i the myopic optimal strategy which is the opti-

mal strategy if there were only one more alternative to search, and the search cost is

k(i). This is a threshold strategy t̄(i) where this value solves

k(i) =

∫ ∞

t̄(i)

(y − t̄(i))f(y)dy (3)

Note that, as k(i) is increasing in i, it must be the case that t̄(i) is decreasing in

i. Let V̂ (x) be the expected value of searching one more period if the utility of the

best seen alternative is x− i.e.

V̂ (x) =

∫ x

−∞
xf(y)dy +

∫ ∞

x

yf(y)d(y)

Note that

V̂ (x)− k(i) > x for x < t̄(i) (4)

V̂ (x)− k(i) < x for x > t̄(i)

We claim that the threshold strategy t̄(i) is in fact the fully optimal strategy

τ̂k(i). We show this for a search for a set of arbitrary size M using induction on j, the

number of items left to search. Definitionally the claim is true for j = 1, so assume it

is true of j and consider j+1. Consider a DM who has searched M − j− 1 items and

the best item seen so far has value y > t̄(M − j − 1). The search should continue if

y < k(M − j − 1) + VM−j−1(y)

Where VM−i−j−1(y) is the value of continuing to search assuming optimal behavior

in the future. But as y > t̄(M − j − 1) > t̄(M − j) = τk(M − j) (where the

last equality follows from the inductive assumption), we know that VM−j−1(y) =
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V̂ (y), as search will stop next period. By inequality (4) we therefore have that

y > k(M − j − 1) + V̂ (y) = k(M − j − 1) + VM−j−1(y) so it is optimal to stop

searching.

Now consider the case in which y < t̄(M−j−1). Now note that VM−j−1(y) ≥ V̂ (y),

because VM−j−1(y) is the maximal value of continuing to search across all feasible

search strategies, while V̂ (y) is the value for a particular feasible strategy. Then we

have that

y < k(M − j − 1) + V̂ (y) ≤ k(M − j − 1) + VM−j−1(y)

And so it is optimal for search to continue.

We have therefore established that the optimal threshold strategy is to set τ(i) =

t̄(i) for all i. Because t̄(i) is decreasing in i this completes the proof.

A.2 Proof of Theorem 3

Proof (Part 1). Let x be the first item in l that has utility above d. Fix a threshold

function τ . Then cτ,u(l) = d if and only if search stops before an alternative with

utility above d is found - i.e. sτ,u(l) ▷l x. This will occur if and only if, for some

y ▷l x,

u(d) > τ(ly, |A(l)|) = τ̂k(|A(ly)|)

Let y∗ be the element that immediately precedes x in l. Then, as τ̂k is strictly

decreasing, the above condition will hold if and only if

u(d) > τ̂k(|A(ly
∗
)|)

As u and is fixed and τ = τ̂k is fixed, whether or not this condition holds depends

only on |A(ly∗)| = F . Thus, for any τ , 1 (cτ,u(l) = d) depends only on F , and therefore

so does

ĉ(d, l) =
∑
τ∈T

T (τ)1(cτ,u(l) = d)

completing the proof.
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Proof (Part 2). For any u, l τ = τ̂k and x

sτ,u(l) ⊵l x

If and only if, for some y ⊵l x

max
z⊵ly

u(z) > τ(ly, |A(l)|) = τ̂k(|A(ly)|)

As, for all y ⊵l x, maxz⊵ly u(z) ≤ maxz⊵lx u(z) and τ̂k(|A(ly)|) ≥ τ̂k(|A(lx)|), this
condition will hold if and only if

max
z⊵lx

u(z) > τ̂k(|A(lx)|)

The left hand side depends only on the maximal value of utility that occurs at of

before x, while the right hand side depends only on |A(lx)| - i.e. the position of x in

l, thus completing the proof.

A.3 Proof of Theorem 5

Proof (Part 1). Let x be the first item in l that has utility above d. Fix a threshold

function τ̂ sk . Then cτ̂sk ,u(l) = d if and only if search stops before an alternative with

utility above d is found - i.e. sτ̂sk ,u(l) ▷l x. Given that search will definitely stop at nk

(assuming that this is less than the length of list l), then we have cτ,u(l) = d if and only

if nk ≤ F - the position of the first above default alternative. Thus the probability

that the default is chosen depends only on the probability P (k|nk ≤ F ).

Proof (Part 2). For any u, l τ = τ̂ sk and x

sτ,u(l) ⊵l x

if and only if |A(lx)| ≥ nk i.e. the position of x in l. Thus the probability of stopping

at or before x is just P (k|nk ≤ |A(lx)|).
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A.4 Proof of Lemma 2

Proof. First, let T be decreasing. Let m > 1 be the smallest integer such that

τ̂ ∗(m+1) < τ̂ ∗(m) for some τ̂ ∗ in the support of T . This means, that for all τ̂ in the

support of T the thresholds are constant for points 1 to m (i.e. τ̂(1) = ... = τ̂(m))

and either constant or strictly decreasing between m and m + 1. Now construct

a set B which contains d, y and x1, ..., xm. Select the utility function such that

u(y) > τ̂ ∗(m) > u(d) > τ̂ ∗(m + 1) > u(x1) > .... > u(xm). Consider the set

A = {d, y}. There is only one possible list ordering in A, which is dy. Thus, the

probability of choosing the default is

p(d,A) =
∑
τ∈T

T (τ̂)1(τ̂(1) < u(d))

Specifically, the default will not be chosen under τ̂ ∗.

Now consider the set B. Note that any τ that led to the choice of the default in

set A will also lead to the choice of the default in set B under any list ordering, as for

such thresholds τ̂(1) < u(d), and so only the default will be searched. Furthermore,

with some probability the threshold τ̂ ∗ will lead to the choice of the default. Consider

the list l = dx1....xmy. From this list, because u(d) > τ̂ ∗(m + 1), su,τ (l) = xm and

cu,τ (l) = d. Thus we have

p(d,B) ≥

sumτ∈T T (τ̂)1(τ̂(1) < u(d)) + T (τ̂ ∗)
1

|LB|
>

sumτ∈T T (τ̂)1(τ̂(1) < u(d))

= p(d,A)

Thus demonstrating choice overload with uniform search.

Next assume that T is either increasing or constant and fix a utility function u.

We show that, if an increasing or constant threshold function τ̂ leads to a choice other

than the default for some list order in a set A, then it must lead to a choice other
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than the default for any set B ⊃ A and list l′ ∈ LB. This is enough to establish the

lemma, as it implies that the probability of choice of default in set A must be lower

than in set B. To see this claim, note that, if d is not chosen from l ∈ LA according

to τ̂ , it must be that, for some x ∈ A, u(x) > u(d) and x ⊵l su,τ̂ (l). This means

(i) that τ̂(1) > u(d) and (ii) that there exists an x ∈ A(L) such that u(x) > u(d).

Now consider any l′ ∈ LB. Note that, because τ̂(1) > u(d) and τ̂(k) ≥ τ̂(1) for all

|B| > k ≥ 1, search will either stop because (a) some y is found at search point k such

that u(y) ≥ t̂(k) > u(d), or (b) because the entire set has been searched, in which

case x has been seen. In either case there exists an element z such that u(z) > u(d)

and z ⊵l su,τ̂ (l
′), meaning that cu,τ̂ (l

′) ̸= d

A.5 Proof of Theorem 6

Proof. Let τ̂k be the threshold function in the support of T that is consistent with

the highest cost k. This implies that τ̂k(µ, n) ≤ τ(µ, n) for every τ in the support of

T , beliefs µ and items remaining n.

Note that it must be the case that observing a (the worst possible alternative)

increases the likelihood that the choice set is of low quality, so µ(da) < µ(d) = 0.5.

As k guarantees learning, this means that τ̂k(µ(da), 1) < τ̂k(µ(d), 1).

Consider three alternatives d, a and x and a utility function u such that u(a) <

u(d) < u(x) and τ̂k(µ(da), 1) < u(d) < τ̂k(µ(d), 1).

We will show that this will cause choice overload when comparing the sets A =

{d, x} and B = {d, a, x}. Note first, that the default will never be chosen in set

A. This is because u(d) < τ̂k(µ(d), 1) ≤ τ(µ(d), 1) for every τ in the support of T .

Thus x will always be searched in choice set A, meaning that it will be chosen, as

u(x) > u(d). We can therefore conclude that p(d,A) = 0.

In order to show that T can generate choice overload with uniform search, it is

therefore enough to find one threshold in the support of T and one list order from B

in which d is chosen. This will be the case for the order dax ad the threshold τ̂k. This

is because, by assumption, τ̂k(µ(da), 1) < u(d), and so search stops after the sequence
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da is observed. As u(d) > u(a), d will be chosen, implying

p(d,B) ≥ T (τ̂k)
1

2
> 0 = p(d,A)

A.6 Proof of Theorem 7

Proof (Part 1). Let y be the first item in l that has utility above d. Fix a threshold

function τ̂k. Then cτ̂k,u(l) = d if and only if search stops before an alternative with

utility above d is found - i.e. sτ̂k,u(l) ▷l y. Let x be the alternative immediately

proceeding y, then by definition

sτ̂k,u(l) ▷l y if and only if k ≥ ml,u(x)

Thus

ĉ(d, l) =
∑
τ∈T

T (τ)1 (sτ,u(l) ▷l y)

=
∑
k∈K

P (k)1(k ≥ ml,u(x))

Proof (Part 2). This follows directly from the definition of the minimum cost that

induces stopping

∑
y⊵lx

ŝ(y, l)

=
∑
τ∈T

T (τ)1 (sτ,u(l) ⊵l x)

=
∑
k∈K

P (k)1(k ≥ ml,u(x))
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A.7 Proof of Lemma 4

Proof. By Remark 1, we know that for a given k and |N | the solution to the optimal

search problem is a fixed reservation level. Furthermore the solution is given by the

solution to the miopic search problem - i.e. the x∗ that solves

k =

∫ ∞

x∗
(x− x∗)f|N |dx

For a fixed x∗, the right hand side of this expression is decreasing in |N |, as |M | > |N |,
implies that f|N | strictly first order stochastically dominates f|M |. Thus, for a fixed

cost, an increase in set size from |N | to |M | must be matched by a decrease in x∗ to

ensure that the right hand side of the expression equals the left hand side.

A.8 Proof of Theorem 8

Proof. First we show that decision avoidance is consistent with choice overload. Pick

some τ̂ d∗ in the support of T . By assumption, τ d∗(1) > τ d∗(2). Pick 3 alternatives,

d, x and y, and a utility function u such that

τ d∗(1) > u(y) > u(d) > u(x) > τ d∗(2)

Now consider the set A = {d, y}. Here, there is one possible list - dy. The

probability of choosing the default in this list is equal to the probability of threshold

functions such that τ d(1) < u(d)

p(d,A) =
∑

T (τ)1(τ d(1) < u(d))

Note that τ d∗ is not part of this set.

Now consider a set B = {d, x, y} and note that, for any list order l, τ d∗ will lead

to the choice of the default: u(d) > τ d∗(2) means that sτd∗,u(l) = d and so cτd∗,u(d).

Note also that any threshold that lead to the choice of d in A will also lead to the

same choice in B for any search order, as the fact that d was chosen in A implies that
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τ d(1) < u(d), and the fact that τ is strictly decreasing implies that τ d(2) < τ d(1).

Thus we have

p(d,B) ≥
∑

T (τ)1(τ d(1) < u(d)) + T (τ d∗)

>
∑

T (τ)1(τ d(1) < u(d))

= p(d,A)

Next we show that contextual inference is consistent with choice overload. to see

this, let k∗ be the highest cost such that there exists a τ Ik∗(x) in the support of T . By

assumption, we know that τ Ik∗(2) > τ Ik∗(3). Pick three alternatives, d, x and y such

that

τ Ik∗(2) > u(y) > u(d) > u(x) > τ Ik∗(3)

Note that, by construction τ Ik (2) ≥ τ Ik∗(2) > u(d) for every τ Ik (1) ∈ T , and so

in the set A = {d, y} we have that, for all such threshold functions the set will be

completely searched, and because u(y) > u(d), u(y) will be chosen. Thus p(d,A) = 0,

and so to demonstrate choice overload with uniform search, we only need to find a

single search order from the set B = {d, x, y} and single threshold in T such that the

default is chosen. Note that u(d) > τ Ik∗(3), and so sτI
k∗ ,u

(l) = d for any l such that

|A(l)| = 3. As a result, cτI
k∗ ,u

(l) = d for any search order derived from B, completing

the proof.

A.9 Proof of Theorem 9

Proof. We first deal with the case in which τ is consistent with either decision avoid-

ance or the search problem with contextual inference. In order to cause choice over-

load, it must be that, with some probability, d was not chosen from the set A. This

means that there must be some x ∈ A such that u(x) > u(d). A necessary condition

for choice overload is that for some l ∈ LB cτ,u(l) = d. We therefore complete this

part of the proof by first showing

cτ,u(l) = d ⇒ sτ,u(l) = d
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We do so by showing that sτ,u(l) ̸= d then cτ,u(l) ̸= d. As τ is consistent with either

decision avoidance or contextual inference, we know that τ d(N) is weakly decreasing

inN , the number of items remaining to search,25. If sτ,u(l) ̸= d it must be the case that

that τ(N − 1) > u(d), and so τ(i) > u(d) for all i < N − 1, as τ(N − 1) ≤ τ(i). Thus

search will only stop if, for some x searched at position j, u(x) > τ(N − j) > u(d), or

all items have been searched. In either case, (given that there is an alternative x in l

such that u(x) > u(d)), we have u(x) > u(d) for some x ⊵l sτ,u(l) and so cτ,u(l) ̸= d.

This confirms that sτ (l) = d for some l ∈ LB. However, as decision avoidance and

contextual inference stopping rules depend only on the number of alternatives, the

fact that sτ (l) = d for some l ∈ LB implies sτ (l) = d for all l ∈ LB.

We next show that, for any x ∈ A ⊂ B where x is an above-default alternative

p(d,B)− p(d,A) =
∑
l∈LB

πB(l)ŝ(d, l)−
∑
l∈LA

πA(l)ŝ(d, l)

As, for any set S,

p(d, S) =
∑
l∈LS

πS(l)ĉ(d, l)

It is enough to show that, for any set in which there is an above alternative

ĉ(d, l) = ŝ(d, l)

Given that we have already shown that

cτ,u(l) = d ⇒ sτ,u(l) = d

and as it is clearly true that sτ,u(l) = d ⇒ cτ,u(l) = d, we can conclude that

ĉ(d, l) =
∑
τ∈T

T (τ)1(sτ,u(l) = d) = ŝ(d, l)

We next consider the case in which the threshold function τ is consistent with

25It is strictly decreasing if τ is consistent with decision avoidance, constant if it is consistent with
contextual inference.
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either search with increasing costs, static optimization or learning. We first need to

show that τ can generate choice overload only if, for some l ∈ LB, d ▷l sτ (l) ▷l xl

where xl is the first above default alternative in l. To see this, first note that, if sτ (l) =

d for all l ∈ LB, it means that u(d) > τ(d, |B|). All the threshold functions currently

being considered are either invariant to |B| (increasing costs or static optimization) or

increasing in |B| (learning). So, as |A| < |B|, this would imply that u(d) > τ(d, |A|)
and so sτ (l) = d for all l ∈ LA. This would in turn imply cτ (l) = d for all l ∈ LA,

and so for any induced data set, p(d,A) = 1, making choice overload impossible.

This implies that, for choice overload to occur, a necessary condition is that, for

some l ∈ LB, d ▷l sτ (l). Next, note that, xl ⊵l sτ (l), implies that cτ (l) ̸= d, as

by construction u(xl) > u(d). Thus, it must be the case that, for some l such that

d ▷l sτ (l), it must also be that sτ (l) ▷l xl, otherwise every list order that leads to the

choice of default in B would also lead to the choice of default in A and so we would

have p(d,B) ≤ p(d,A).

Finally we show that, for any T that is consistent with either of these models and

any set A such that |A| = 2 and which contains an alternative better than the default

p(d,B)− p(d,A) ≤
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)

First, note that, for any list l with associated first above-default alternative xl the

default is chosen if and only if search stops before xl. Thus it is generally true for

any set S that contains an above default alternative that

p(d, S) =
∑
l∈LB

πS(l)
∑

y∈B|d⊵ly▷lxl

ŝ(y, l)

=
∑
l∈LB

πS(l)ŝ(d, l) +
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)
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Furthermore,

ŝ(d, l) =
∑
τ∈T

T (τ)1(sτ,u(l) = d)

= .
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

- i.e. search stops at d if and only if a threshold function is drawn such that the

utility of d is above the threshold.

Finally, note that, as |A| = 2, it is always the case that the only alternative before

the first above-default alternative is d itself, so

p(d,A) =
∑
l∈LB

πS(l)ŝ(d, l)

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

This implies that

p(d,B)− p(d,A)

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |B(l)|)) +
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)

−
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

As argued above, for threshold functions in the classes considered, u(d) > τ(d, |B(l)|)
implies that u(d) > τ(d, |A(l)|), and so

∑
τ∈T

T (τ)1 (u(d) > τ(d, |B(l)|))−
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|)) ≤ 0

Providing the required results.
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A.10 Proof of Theorem 10

Proof. First note that, as shown in the proof of theorem 9, for models in this class,

we have that the default can only be chosen if it is the only alternative searched - i.e.

cτ,u(l) = d ⇒ sτ,u(l) = d

This implies that

ĉ(d, l) =
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l′)|))

= ĉ(d, l′)

B Sequential Search with Learning

A decision maker faces a choice set with N options of scalar monetary rewards. These

options have been drawn from one of two probability distributions F (x|µ) or F (x|µ)
with same support [a, b] ⊂ R. F (x|µ) is a “good” distribution, while F (x|µ) is a

“bad” distribution. They are both absolutely continuous, with respective probability

density functions f(x|µ) and f(x|µ), which satisfy a strict Monotone Likelihood Ratio

property. This also implies that F (x|µ) strictly first order stochastically dominates

F (x|µ), i.e., F (x|µ) < F (x|µ) for all x ∈ (a, b).

The decision maker has a belief µ ∈ (0, 1) over the probability that the choice set

they’re facing was drawn from F (x|µ), and initially holds a prior µ0 ∈ (0, 1). Every

belief µ defines a new probability distribution F (x|µ) = µF (x|µ) + (1 − µ)F (x|µ),
with f(x|µ) analogously defined. After looking at option x ∈ [a, b] when holding
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belief µ ∈ (0, 1), the decision maker updates belief to µ(x) according to Bayes’ Rule:

µ(x) =
1

1 + (1−µ)
µ

f(x|µ)
f(x|µ)

.

This defines a function (x, µ) 7→ µ(x) from options x and current beliefs µ to a new

updated belief µ(x). Notice that this resulting function µ(x) is increasing in µ and

in x due to the strict Monotone Likelihood Ratio assumption.26

The DM sequentially searches through the available options. All search options

remain available to choose - i.e. search with recall. Every period they have a value

y ∈ [a, b] defining the highest monetary reward encountered thus far in the search

process and a current belief µ ∈ (0, 1). They can either stop and pick the best option

found so far, terminating the problem, or search and look at a new option. Upon

drawing a value x, they update their belief to µ(x) as described above and update

their best available option if x > y or not otherwise, and move on to the next period.

The period variable n defines how far along the search process the agent is. Specif-

ically it marks how many options in the choice set are left to be searched. This defines

the following important periods. The agent starts at period n = N , with all options

still unsearched, and only the default option being seen. n = 1 is the final period,

in which there is only a single option left to search. n = 0 is the terminal period,

in which all options have been searched and the problem terminates. Each time the

agent searches, the period counter decreases by one.

This process defines a collection of value functions VN , VN−1, ..., V1, V0 : [a, b] ×
(0, 1) → R. The value function Vn(y, µ) gives the value of reaching period n while

holding belief µ and having encountered a best option with value y thus far (i.e. after

the value drawn in period n has been revealed). These value functions are recursively

connected to each other as follows. By assumption, in the terminal period the process

26The following results depend only on these monotonicity properties of the updating process,
and not specifically on Bayesian updating. Any updating rule satisfying them will imply the same
results.
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must terminate, and therefore:

V0(y, µ) = y for all y and µ.

And for n = 1, ..., N , the decision maker can either stop, and take option value y, or

search, in which case they might draw a value that is above or below their current

best one, while updating their beliefs accordingly. Therefore, we have the Bellman

equation:

Vn(y, µ) = max

{
y,−k +

∫ y

a

Vn−1(y, µ(x))dF (x|µ) +
∫ b

y

Vn−1(x, µ(x))dF (x|µ)
}
.

In particular, given V0 as assumed, in the last period n = 1:

V1(y, µ) = max

{
y,−k + yF (y|µ) +

∫ b

y

xdF (x|µ)
}
.

That is, in this last period, beliefs µ only affect the value function through the dis-

tribution of values in period 0, hence the problem takes a typical form in which the

learning aspect can be ignored. Given a belief µ, the solution takes the form of a

threshold τ1(µ) ∈ [a, b) such that there’s search if y < τ1(µ) and stopping otherwise.

It’s obtained by setting y = τ1(µ) such that the two terms inside the max operator in

V1 are equal. Applying integration by parts on
∫ b

y
xdF (x|µ) then yields the standard

equation defining τ1(µ):

k =

∫ b

τ1(µ)

1− F (x|µ)dx,

with τ(µ) = a if k ≥
∫ b

a
1− F (x|µ)dx.

It turns out that in earlier periods, despite the additional element of learning, the

main properties of the problem and its solution stay the same. Denoting π∗
n(y, µ) ∈

{stop, search} the optimal policy function, the next proposition summarizes these

properties.

Proposition 1. For any period n the following hold

1. Vn(y, µ) is a continuous function.
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2. Given a belief µ, Vn(y, µ) is an increasing convex function of y.

3. Given a belief µ, Vn(y, µ) is absolutely continuous in y.27

4. ∂
∂y
Vn(y, µ) ≤ 1 for all y and belief µ such that it exists, with

i. ∂
∂y
Vn(y, µ) = 1 if π∗

n(y, µ) = stop.

ii. ∂
∂y
Vn(y, µ) < 1 if π∗

n(y, µ) = search.

5. For each belief µ, there’s a threshold τn(µ) ∈ [a, b) such that

i. π∗
n(y, µ) = stop if y ≥ τn(µ), π

∗
n(y, µ) = search otherwise.

ii. the resulting function τn(µ) is non-decreasing in µ.

iii. for every belief µ there’s kn(µ), increasing in µ, such that if the cost of search-

ing is k < kn(µ), then τn(µ) > a. If µ < µ′ are such that τn(µ) > a, then

τn(µ) < τn(µ
′).

6. Given y, Vn(y, µ) is non-decreasing in beliefs µ. And, given µ < µ′, if y < τn(µ),

then Vn(y, µ) < Vn(y, µ
′).

Proof. The proof is by induction over the period n, starting from n = 1.

Before starting, define for each (x, y) ∈ [a, b]2 the continuous function φ given by

φ(x, y) = I{x < y}y + I{x ≥ y}x, with I being the indicator function. Define then,

for any y ∈ [a, b] and µ ∈ (0, 1) and non-terminal period n, the value of searching :

Sn(y, µ) =

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ),

with this being well-defined by the assumptions that will hold on Vn−1 during the

proof, namely continuity.

First, we establish (1)-(6) for V1.

That (1)-(5) hold for V1 follows from the discussion preceding the proposition. It

might only be necessary to notice that if π∗
1(y, µ) = search, ∂

∂y
V1(y, µ) =

∂
∂y
S1(y, µ) =

27Note that this in turn implies that it is almost everywhere differentiable in y.
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F (y|µ) < 1 if y < b, and is increasing in y. This derivative can be obtained by

applying the Leibniz integral rule. Given this, absolute continuity also follows. In

fact, V1(y, µ) is Lipschitz continuous with constant 1. When checking for Lipschitz

continuity, the only case that might not be immediate is if y1 and y2 are such that

y1 ≤ τ1(µ) < y2. But then, by the definition of τ1(µ), it follows that

y1 ≤ V1(y1, µ) = S1(y1, µ)−k ≤ τ1(µ) = S1(τ1(µ), µ)−k ≤ S(y2, µ)−k < y2 = V1(y2, µ).

To see (6), notice that, for any y and any µ, if π∗
1(y, µ) = search,

V1(y, µ) = S1(y, µ)− k = −k +

∫ b

a

φ(x, y)dF (x|µ).

Therefore, V1 is the maximum of y, constant in µ, and S1 − k. We establish now

that S1 is non-decreasing in µ, hence so is V1, and if y < b, S1 is increasing in µ. Fix

y and take µ and µ′ such that µ′ > µ. Notice that F (·|µ′) first order stochastically

dominates F (·|µ) and that, for a fixed y, φ is a non-decreasing function of x to obtain

that

S1(y, µ) =

∫ b

a

φ(x, y)dF (x|µ) ≤
∫ b

a

φ(x, y)dF (x|µ′) = S1(y, µ
′).

If y < b, then this inequality is strict, since for x ≥ y, φ(y, x) = x is increasing and

strict stochastic dominance holds. Furthermore, then, given µ < µ′, if y < τ1(µ), then

y < τ1(µ) < τ1(µ
′) < b, hence V1(y, µ) = S1(y, µ) < S1(y, µ

′) = V1(y, µ).

We now proceed to the next step of the induction. Assume (1)-(6) hold for Vn−1

and consider Vn. We start with some preliminary observations. Notice that

Vn(y, µ) = max{y, Sn(y, µ)− k}.

From the inductive assumption, Vn−1 is continuous, and since φ(x, y) and µ(x) are

continuous functions, Sn(y, µ) is continuous. Therefore, so is Vn(y, µ), it being the

maximum of two continuous functions. Thus (1) is established. The above allows us to

establish the following which will be of use later: π∗
n(y, µ) = search if Sn(y, µ) > y+k

and π∗
n(y, µ) = stop otherwise. In particular, π∗

n(b, µ) = stop for all beliefs µ. Indeed,
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φ(x, b) = b for all x ∈ [a, b], and since τn−1(µ) < b by the inductive assumption,

Sn(b, µ) = b < b+ k.

Now take a fixed belief µ and consider

∂

∂y
Sn(y, µ) =

∂

∂y

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ).

From the inductive assumptions on Vn−1, the Leibniz integral rule applies to Sn,

hence it’s absolutely continuous and we can switch the signs of differentiation and

integration to obtain the derivative, which exists almost everywhere:28

∂

∂y
Sn(y, µ) =

∫ b

a

∂

∂y
Vn−1(φ(x, y), µ(x))dF (x|µ) =

∫ y

a

∂

∂y
Vn−1(y, µ(x))dF (x|µ),

with the last equality following by separating the integral over [a, y] and (y, b], the

latter upon which it is zero, since φ(x, y) = x.

We now establish that Sn(y, µ) is non-decreasing in beliefs µ, and if y < b it is

increasing. This follows similarly to S1. Fix y and consider beliefs µ, µ′ with µ′ > µ.

From (6) on Vn−1, Vn−1(φ(x, y), µ(x)) ≤ Vn−1(φ(x, y), µ
′(x)) for all x ∈ [a, b], and

thus

Sn(y, µ) =

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ) ≤
∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ).

Now first order stochastic dominance and Vn−1(φ(x, y), µ
′(x)) being non-decreasing

in x, from the inductive assumption and φ(x, y) and µ′(x) being non-decreasing in x,

lead to

Sn(y, µ) ≤
∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ) ≤

∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ′) = Sn(y, µ

′).

28Specifically, Vn−1(φ(x, y), µ(x)) is continuous and absolutely continuous in y, φ(x, y) being ab-
solutely continuous and bounded, with a bounded derivative. Under these conditions, it’s known
that the Leibniz integral rule still holds, hence Sn will be absolutely continuous with its derivative
given by the switching of the signs of differentiation and integration. See, for example, Theorem 3 in
https://planetmath.org/differentiationundertheintegralsign. In fact, it can be shown that
the Leibniz integral rule still holds under even weaker conditions by using generalized functions, as
in Theorem 7.40 of Jones (1982, p.263). Proofs relating these more general results to more specific
cases such as ours can be found in Cheng (2010).
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And if y < b, then this last inequality is strict. This is because of strict stochas-

tic dominance and the fact that for x > y, Vn−1(φ(y, x), µ(x)) = Vn−1(x, µ(x)) is

increasing in x.

(2)-(6) will now follow from these previous observations and the inductive assump-

tions on Vn−1. We first register an intermediate result:

Claim. If π∗
n(y, µ) = stop, then π∗

n(y
′, µ) = stop at any y′ > y and if π∗

n(y, µ) =

search then π∗
n(y

′, µ) = search at any y′ < y.

Proof of Claim. By inductive assumption, ∂
∂y
Vn−1(y, µ) ≤ 1 for all y, µ, thus

∂

∂y
Sn(y, µ) =

∫ y

a

∂

∂y
Vn−1(y, µ(x))dF (x|µ) ≤ F (y|µ) < 1, if y < b.

That is, ∂
∂y
Sn(y, µ) < 1 for all y ∈ [a, b). Therefore, since ∂

∂y
Sn(y, µ) < 1 while

∂
∂y
y = 1, the claim follows.

What the claim establishes is that, holding µ constant, there is, at most, one

switch from searching to stopping as one increases the value of the best option y.

What remains to obtain (5.i) is to show that, if π∗
n(y, µ) = search for some y, then

a switch to π∗
n(y

′, µ) = stop happens at some y′ < b. That is, while it’s possible to

always stop, in particular if the cost k is too high, it’s not possible to always search.

There is always a non-degenerate interval [τn(µ), b] at which there’s stopping.

That is, from the claim and the fact that for any period n, given µ, π∗
n(b, µ) = stop,

it already follows that there’s τn(µ) ∈ [a, b] such that π∗
n(y, µ) = stop if y ≥ τn(µ) and

π∗
n(y, µ) = search otherwise. It remains to see that, in fact, τn(µ) < b. But notice

that if τn(µ) > a then Sn(y, µ) > y+k for some y, while Sn(b, µ) < b+k, so τn(µ) < b

follows from continuity. Thus (5.i) is established.

To establish (5.ii), notice that for any period n, given any y, if π∗
n(y, µ) = stop

then π∗
n(y, µ

′) = stop for all µ′ < µ. Indeed, if Sn(y, µ) ≤ y + k, since Sn(y, µ) is

non-decreasing in beliefs, then given µ′ < µ, Sn(y, µ
′) ≤ Sn(y, µ) ≤ y + k.

For (5.iii), start by noticing that
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Sn(a, µ) =

∫ b

a

Vn−1(x, µ(x))dF (x|µ) ≥
∫ b

a

xdF (x|µ) > a.

Hence kn(µ) = Sn(a, µ)−a, increasing in µ since Sn(a, µ) is, is such that if k < kn(µ),

then Sn(a, µ) > a+ k and thus τn(µ) > a.

Now, if µ < µ′ are such that τn(µ) > a, then τn(µ) + k = Sn(τn(µ), µ) <

Sn(τn(µ), µ
′), because τn(µ) < b. Therefore, π∗(τn(µ), µ

′) = search, which implies

that τn(µ) < τn(µ
′).

With the threshold functions τn(µ) in hand, we can say that

Vn(y, µ) =

Sn(y, µ)− k, if y < τn(µ)

y, otherwise
.

The remaining properties can now be more directly established.

For (6), Vn(y, µ) is constant in µ when τn(µ) ≤ y, and non-decreasing in µ when

τn(µ) > y. Therefore, Vn is the maximum of two non-decreasing functions of µ, and

so is non-decreasing in µ. Now, the second part of (6) follows as in n = 1. If µ < µ′

are such that y < τn(µ), then y < τn(µ) < τn(µ
′) < b, hence Vn(y, µ) = Sn(y, µ) <

Sn(y, µ
′) = Vn(y, µ).

For (3) and (4), Vn(y, µ) is absolutely continuous in y, being the maximum of two

absolutely continuous functions of y. In (τn(µ), b],
∂
∂y
Vn(y, µ) = 1, and in [a, τn(µ)),

∂
∂y
Vn(y, µ) =

∂
∂y
Sn(y, µ) < 1 for a ≤ y < τn(µ) < b as already established.

Finally, for (2), Vn(y, µ) is linear and increasing in y in y ≥ τn(µ), and in y <

τn(µ), Vn(y, µ) = Sn(y, µ) is an increasing convex function. Indeed, notice first that

∂
∂y
Vn(y, µ) = ∂

∂y
Sn(y, µ) > 0 from the inductive hypothesis that ∂

∂y
Vn−1(y, µ) > 0.

Second, for the convexity of Sn, notice that, for all x, φ(x, y) is a convex function of

y. Therefore, since by the inductive assumption Vn−1(y, µ) is increasing and convex in

y for all µ, we have that Vn−1(φ(x, y), µ(x)) is a convex function of y for all x. Hence,

Sn(y, µ) is convex in y. Vn(y, µ) is, then, the maximum of two convex increasing

functions of y, establishing (2).
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Beyond these properties for any given period, the value functions and the threshold

functions also have a relationship between them across periods. As might be expected,

a decrease in the number of options left to search decreases value, and therefore

decreases the thresholds. This captures an exploration-exploitation trade-off that

exists because this model has a finite horizon. As more and more options are searched,

the opportunity for learning decreases, and so it becomes more profitable to stop

searching and choose.

Proposition 2. 1. For any y, µ, Vn−1(y, µ) ≤ Vn(y, µ) for any period n.

2. For any µ, τn−1(µ) ≤ τn(µ) for any period n.

Proof. The proof is again by induction over n.

Since the search process terminates in n = 0, V1(y, µ) ≥ y = V0(y, µ) for any y

and µ, and we can take τ0(µ) = a for all µ, hence τ1(µ) ≥ τ0(µ).

Now assume (1) and (2) hold for n and consider Vn+1(y, µ) and τn+1(µ) for some

y, µ. We will show that Vn+1(y, µ) ≥ Vn(y, µ), establishing (1), and in the process

will also show that it cannot be that π∗
n(y, µ) = search but π∗

n+1(y, µ) = stop, hence

τn+1(µ) ≥ τn(µ), which establishes (2).

If π∗
n(y, µ) = stop and π∗

n+1(y, µ) = stop, Vn+1(y, µ) = y = Vn(y, µ). If π
∗
n(y, µ) =

stop and π∗
n+1(y, µ) = search, Vn(y, µ) = y ≤ Vn+1(y, µ) by definition. If π∗

n(y, µ) =

search and π∗
n+1(y, µ) = search, then

Vn+1(y, µ) = Sn+1(y, µ)− k ≥ Sn(y, µ)− k = Vn(y, µ)

since Sn+1(y, µ) ≥ Sn(y, µ) by the inductive assumption that Vn(y, µ) ≥ Vn−1(y, µ)

for all y, µ.

And it cannot be that π∗
n(y, µ) = search but π∗

n+1(y, µ) = stop. Indeed, this would

imply that

Sn(y, µ)− k = Vn(y, µ) > y = Vn+1(y, µ) ≥ Sn+1(y, µ)− k

which, as mentioned above, would contradict the inductive assumption (1) on Vn and
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Vn−1.

In the main text, lemma 3 connects the results from propositions 1 and 2 to

our general sequential search framework. Since in our general framework we allow

for varying costs of search, we further index the threshold functions obtained in the

propositions by the cost k. It is immediate from the definition of these thresholds

that they are lower the higher the costs.

Notice that for thresholds to be strictly interior for all periods and beliefs, it’s

sufficient that limµ→0 τ1(µ) > a because of statements 5.ii from proposition 1 and 2

from proposition 2. To see that such costs guaranteeing search exist, define k∗ =∫ b

a
xdF (x|µ) − a > 0 and notice that kn(µ) =

∫ b

a
Vn−1(x, µ(x))dF (x|µ) − a ≥ k∗ for

all µ and n. Therefore, any k < k∗ is such that it satisfies the desired properties. We

then define that a cost k guarantees search if the threshold for that cost is strictly

interior for period 1 and all beliefs, in which case they are strictly increasing in beliefs

from statement 5.iii in proposition 1.

C Additional Lemmata

C.1 Testing for Choice Overload

Lemma 5. Let B and A be two sets such that A ⊂ B. Both B and A have been

constructed by drawing items uniformly (without replacement) from a grand set X.

Let |A| = 2, and d ∈ A. Let T be a subset of X. Then, if the stochastic choice

function p does not exhibit choice overload, then

E(p(d,A)|A ∩ T ̸= 0) ≥ E(p(d,B)|B ∩ T ̸= 0)
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Proof. Ennumerate T = {t1...tn}. Note that

E(p(d,A)|A ∩ T ̸= 0)

=
∑
j∈T

1

n
p(d, {d, tj})

Now let F (t, j) be the event that B contains t, and that the number of elements

of t in B in total is j - i.e. t ∈ B and j|B ∩ T | = 2

We can then write

E(p(d,B)|B ∩ T ̸= 0)

=

[
n∑

i=1

1

i
P (F (t1, i))E [p(d,B)|F (t1, i)]

]

+

[
n∑

i=1

1

i
P (F (t2, i))E [p(d,B)|F (t1, i)]

]
+....

+

[
n∑

i=1

1

i
P (F (tn, i))E [p(d,B)|F (t1, i)]

]

Now, by symmetry, it must be the case that 1
i
P (F (t1, i)) =

1
n
, so we can rewrite

the above as

E(p(d,B)|B ∩ T ̸= 0)

=

[
1

n

n∑
i=1

1

i
nP (F (t1, i))E [p(d,B)|F (t1, i)]

]

+

[
1

n

n∑
i=1

1

i
nP (F (t2, i))E [p(d,B)|F (t1, i)]

]
+....

+

[
1

n

n∑
i=1

1

i
nP (F (tn, i))E [p(d,B)|F (t1, i)]

]

Finally note that, for each j, if p does not exhibit choice overload, then p(d, {d, tj}) ≥
p(d,B) for every B in F (t1, i). Therefore as

∑n
i=1

1
i
nP (F (t1, i)) = 1, we have
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Table D.1: The Effect of Distribution Uncertainty

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.04 0.04 650 0.00 0.04 650
2 -0.09** 0.04 564 -0.04 0.04 564
3 -0.05 0.04 508 -0.03 0.05 508
4 -0.04 0.05 436 -0.04 0.05 436
5 0.01 0.05 379 -0.01 0.05 379
6 0.02 0.06 317 -0.02 0.55 317
7 -0.05 0.06 261 -0.08 0.06 261
8 -0.08 0.06 207 -0.14** 0.06 207
9 -0.05 0.07 172 -0.16** 0.07 172
10 -0.08 0.08 132 -0.18** 0.09 132
11 -0;08 0.09 107 -0.25** 0.10 107
12 -0.23** 0.11 81 -0.33*** 0.11 81
13 -0.22* 0.11 64 -0.22* 0.13 64
14 -0.33** 0.14 45 -0.24* 0.14 45
15 -0.19 0.17 30 -0.27 0.17 30

Each line reports the coefficient of a regression of de-
fault choice on a dummy variable for whether minimum
beliefs (left hand panel) and minimum costs (righ hand
panel) measured at period k are above the median, look-
ing only at sets in which the first above-default alterna-
tive appears after position k. * significant at 10% level,
** significant at 5% level, *** significant at 1% level.

p(d, {d, tj}) ≥
n∑

i=1

1

i
nP (F (t1, i))E [p(d,B)|F (t1, i)]

And so we have the desired result

D Additional Results

Table D.1 repeats the analysis of table 4, but replacing the independent variables

with discretized versions of themselves
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Table D.2: Default Choice by Set Size -
No Learning Control

Set Size % Default Choice N
2 26 47
11 39 218
16 41 310
21 43 379

Percentage of sets that contained at least
one item better than the default in which the
default was chosen. Data from No Learning
control treatment

Figure D.1: Effect of position of first above-default alternative on default choice -
No Learning Control. Bars show the probability of default being chosen. Error bars
represent standard errors.

D.1 No Learning Control

The following tables and figures replicate the main analysis using data from the no

learning control treatment
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Table D.3: Regression Results-
No Learning Control

Default Choice

S=11 0.134*
(0.070)

S=16 0.154**
(0.070)

S=21 0.177**
(0.070)

Constant 0.255***
(0.064)

R2 0.006
N 954

OLS regression of default choice
on set size dummies. Standard er-
rors clustered at the subject level.
* significant at 10% level, ** signif-
icant at 5% level, *** significant at
1% level.

Table D.4: Categorizing Choice Overload - No Learning Control

Size Choose Default Classic Search Mistake N
2 26% 9% 0% 17% 57
11 39% 15% 7% 17% 218
16 41% 16% 10% 15% 310
21 43% 16% 14% 13% 379

s > 2 minus s = 2 16% 7% 11% -2%

For each choice set size, reports the fraction of sets that contain an above-default option
in which the default was chosen (Chose Default), then categorizes these as occurring due
to decision avoidance/contextual inference (Classic), search based processes (Search) or
calculation errors (Mistakes).
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Table D.5: Categorizing Choice Overload -
Search vs No Search

Baseline No Learning
Size Classic Search Classic Search
2 100 0 100 0
11 40 60 67 33
16 25 75 61 39
21 21 79 54 46

For the Baseline treatment and No-Learning con-
trol, shows the split between Search vs Classic rea-
sons for not choosing the default (excluding the
‘mistakes’ category).

Table D.6: The Effect of Distribution Uncertainty -
No Learning Control

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.02 0.09 834 0.01 0.51 834
2 -0.03 0.18 765 -0.04 0.34 765
3 0.11 0.29 692 0.12 0.29 692
4 0.13 0.41 627 0.20 0.24 627
5 0.08 0.58 550 0.12 0.24 550
6 0.55 0.85 481 0.22 0.25 481
7 -1.60 1.07 425 0.10 0.25 425
8 0.28 1.43 359 0.22 0.27 359
9 0.73 1.84 302 0.34 0.28 302
10 -0.02 2.26 238 0.16 0.32 238
11 3.45 2.76 204 0.31 0.36 204
12 3.52 3.33 171 0.05 0.39 171
13 5.02 3.87 138 0.08 0.43 138
14 10.84*** 3.48 107 0.36 0.50 107
15 11.86*** 4.22 74 0.16 0.57 74

Each line reports the coefficient of a regression of de-
fault choice on minimum beliefs (left hand panel) and
minimum costs (righ hand panel) measured at period
i, looking only at sets in which the first above-default
alternative appears after position i. * significant at 10%
level, ** significant at 5% level, *** significant at 1%
level.
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Table D.7: Determinants of Stopping Search
- No Learning Control

Searched Stopped

(1) (2)

Min. Cost -0.403***
(0.081)

Min. Beliefs -0.061
(0.038)

Searched 0.028*** 0.031***
(0.002) (0.002)

Items Remaining -0.001
(0.002)

Above 0.156*** 0.177***
(0.016) (0.016)

Const 0.199*** 0.123***
(0.023) (0.028)

R2 0.481 0.478
N 22,431 22,431
Subject f.e. Yes Yes

Dependent variable is whether or not search has
stopped by given observation. OLS regression
with standard errors clustered at the subject
level * significant at 10% level, ** significant at
5% level, *** significant at 1% level.
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